-
公开(公告)号:US20190158509A1
公开(公告)日:2019-05-23
申请号:US16239081
申请日:2019-01-03
Applicant: Palantir Technologies Inc.
Inventor: Harkirat Singh , Brendan Weickert , Matthew Sprague , Michael Kross , Adam Borochoff , Parvathy Menon , Michael Harris
Abstract: In various embodiments, systems, methods, and techniques are disclosed for generating a collection of clusters of related data from a seed. Seeds may be generated based on seed generation strategies or rules. Clusters may be generated by, for example, retrieving a seed, adding the seed to a first cluster, retrieving a clustering strategy or rules, and adding related data and/or data entities to the cluster based on the clustering strategy. Various cluster scores may be generated based on attributes of data in a given cluster. Further, cluster metascores may be generated based on various cluster scores associated with a cluster. Clusters may be ranked based on cluster metascores. Various embodiments may enable an analyst to discover various insights related to data clusters, and may be applicable to various tasks including, for example, tax fraud detection, beaconing malware detection, malware user-agent detection, and/or activity trend detection, among various others.
-
公开(公告)号:US20160344756A1
公开(公告)日:2016-11-24
申请号:US15228297
申请日:2016-08-04
Applicant: Palantir Technologies Inc.
Inventor: Juan Ricafort , Harkirat Singh , Philip Martin
CPC classification number: H04L63/1416 , G06F21/556 , H04L61/2007 , H04L63/0272 , H04L63/1425 , H04L63/1441
Abstract: Various systems and methods are provided that detect malicious network tunneling. For example, VPN logs and data connection logs may be accessed. The VPN logs may list client IP addresses that have established a VPN connection with an enterprise network. The data connection logs may list client IP addresses that have requested connections external to the enterprise network and remote IP addresses to which connections are requested. The VPN logs and the data connection logs may be parsed to identify IP addresses that are present in the VPN logs as a client IP address and in the data connection logs as a remote IP address. If an IP address is so present, user data and traffic data associated with the IP address may be retrieved to generate a risk score. If the risk score exceeds a threshold, an alert to be displayed in a GUI is generated.
-
公开(公告)号:US20160050224A1
公开(公告)日:2016-02-18
申请号:US14823935
申请日:2015-08-11
Applicant: Palantir Technologies Inc.
Inventor: Juan Ricafort , Harkirat Singh , Philip Martin
CPC classification number: H04L63/1416 , G06F21/556 , H04L61/2007 , H04L63/0272 , H04L63/1425 , H04L63/1441
Abstract: Various systems and methods are provided that detect malicious network tunneling. For example, VPN logs and data connection logs may be accessed. The VPN logs may list client IP addresses that have established a VPN connection with an enterprise network. The data connection logs may list client IP addresses that have requested connections external to the enterprise network and remote IP addresses to which connections are requested. The VPN logs and the data connection logs may be parsed to identify IP addresses that are present in the VPN logs as a client IP address and in the data connection logs as a remote IP address. If an IP address is so present, user data and traffic data associated with the IP address may be retrieved to generate a risk score. If the risk score exceeds a threshold, an alert to be displayed in a GUI is generated.
Abstract translation: 提供了检测恶意网络隧道的各种系统和方法。 例如,可以访问VPN日志和数据连接日志。 VPN日志可以列出已经与企业网络建立VPN连接的客户端IP地址。 数据连接日志可能列出已请求企业网络外部连接的客户端IP地址以及请求连接的远程IP地址。 可以解析VPN日志和数据连接日志,以将VPN日志中存在的IP地址识别为客户端IP地址,并将数据连接日志标识为远程IP地址。 如果IP地址如此存在,则可以检索与IP地址相关联的用户数据和流量数据以产生风险分数。 如果风险分数超过阈值,则生成要在GUI中显示的警报。
-
公开(公告)号:US09177344B1
公开(公告)日:2015-11-03
申请号:US14139640
申请日:2013-12-23
Applicant: Palantir Technologies, Inc.
Inventor: Harkirat Singh , Brendan Weickert , Matthew Sprague , Michael Kross , Adam Borochoff , Parvathy Menon , Michael Harris
CPC classification number: G06F17/3053 , G06F17/30345 , G06F17/30412 , G06F17/30539 , G06F17/30572 , G06F17/30598 , G06F17/30601 , G06F17/30604 , G06F17/30699 , G06F17/30705 , G06F17/3071 , G06F17/30867 , G06Q10/10 , G06Q20/4016 , G06Q30/0185 , G06Q40/00 , G06Q40/02 , G06Q40/025 , G06Q40/10 , G06Q40/123
Abstract: In various embodiments, systems, methods, and techniques are disclosed for generating a collection of clusters of related data from a seed. Seeds may be generated based on seed generation strategies or rules. Clusters may be generated by, for example, retrieving a seed, adding the seed to a first cluster, retrieving a clustering strategy or rules, and adding related data and/or data entities to the cluster based on the clustering strategy. Various cluster scores may be generated based on attributes of data in a given cluster. Further, cluster metascores may be generated based on various cluster scores associated with a cluster. Clusters may be ranked based on cluster metascores. Various embodiments may enable an analyst to discover various insights related to data clusters, and may be applicable to various tasks including, for example, tax fraud detection, beaconing malware detection, malware user-agent detection, and/or activity trend detection, among various others.
Abstract translation: 在各种实施例中,公开了用于从种子生成相关数据集合的集合的系统,方法和技术。 可以根据种子生成策略或规则生成种子。 可以通过例如检索种子,将种子添加到第一群集,检索群集策略或规则,以及基于聚类策略将相关数据和/或数据实体添加到群集来生成群集。 可以基于给定簇中的数据的属性来生成各种聚类分数。 此外,可以基于与集群相关联的各种聚类分数来生成集群组合。 群集可能会根据群集元素进行排名。 各种实施例可以使分析人员能够发现与数据集群相关的各种见解,并且可以适用于各种任务,包括例如税欺诈检测,信标恶意软件检测,恶意软件用户代理检测和/或活动趋势检测 其他。
-
公开(公告)号:US09165299B1
公开(公告)日:2015-10-20
申请号:US14139713
申请日:2013-12-23
Applicant: Palantir Technologies, Inc.
Inventor: Geoff Stowe , Harkirat Singh , Stefan Bach , Matthew Sprague , Michael Kross , Adam Borochoff , Parvathy Menon , Michael Harris
CPC classification number: G06F17/3053 , G06F17/30345 , G06F17/30412 , G06F17/30539 , G06F17/30572 , G06F17/30598 , G06F17/30601 , G06F17/30604 , G06F17/30699 , G06F17/30705 , G06F17/3071 , G06F17/30867 , G06Q10/10 , G06Q20/4016 , G06Q30/0185 , G06Q40/00 , G06Q40/02 , G06Q40/025 , G06Q40/10 , G06Q40/123
Abstract: In various embodiments, systems, methods, and techniques are disclosed for generating a collection of clusters of related data from a seed. Seeds may be generated based on seed generation strategies or rules. Clusters may be generated by, for example, retrieving a seed, adding the seed to a first cluster, retrieving a clustering strategy or rules, and adding related data and/or data entities to the cluster based on the clustering strategy. Various cluster scores may be generated based on attributes of data in a given cluster. Further, cluster metascores may be generated based on various cluster scores associated with a cluster. Clusters may be ranked based on cluster metascores. Various embodiments may enable an analyst to discover various insights related to data clusters, and may be applicable to various tasks including, for example, tax fraud detection, beaconing malware detection, malware user-agent detection, and/or activity trend detection, among various others.
Abstract translation: 在各种实施例中,公开了用于从种子生成相关数据集合的集合的系统,方法和技术。 可以根据种子生成策略或规则生成种子。 可以通过例如检索种子,将种子添加到第一群集,检索群集策略或规则,以及基于聚类策略将相关数据和/或数据实体添加到群集来生成群集。 可以基于给定簇中的数据的属性来生成各种聚类分数。 此外,可以基于与集群相关联的各种聚类分数来生成集群组合。 群集可能会根据群集元素进行排名。 各种实施例可以使分析人员能够发现与数据集群相关的各种见解,并且可以适用于各种任务,包括例如税欺诈检测,信标恶意软件检测,恶意软件用户代理检测和/或活动趋势检测 其他。
-
公开(公告)号:US08788407B1
公开(公告)日:2014-07-22
申请号:US14139603
申请日:2013-12-23
Applicant: Palantir Technologies, Inc.
Inventor: Harkirat Singh , Geoff Stowe , Brendan Weickert , Matthew Sprague , Michael Kross , Adam Borochoff , Parvathy Menon , Michael Harris
IPC: G06Q40/00
CPC classification number: G06F17/3053 , G06F17/30345 , G06F17/30412 , G06F17/30539 , G06F17/30572 , G06F17/30598 , G06F17/30601 , G06F17/30604 , G06F17/30699 , G06F17/30705 , G06F17/3071 , G06F17/30867 , G06Q10/10 , G06Q20/4016 , G06Q30/0185 , G06Q40/00 , G06Q40/02 , G06Q40/025 , G06Q40/10 , G06Q40/123
Abstract: In various embodiments, systems, methods, and techniques are disclosed for generating a collection of clusters of related data from a seed. Seeds may be generated based on seed generation strategies or rules. Clusters may be generated by, for example, retrieving a seed, adding the seed to a first cluster, retrieving a clustering strategy or rules, and adding related data and/or data entities to the cluster based on the clustering strategy. Various cluster scores may be generated based on attributes of data in a given cluster. Further, cluster metascores may be generated based on various cluster scores associated with a cluster. Clusters may be ranked based on cluster metascores. Various embodiments may enable an analyst to discover various insights related to data clusters, and may be applicable to various tasks including, for example, tax fraud detection, beaconing malware detection, malware user-agent detection, and/or activity trend detection, among various others.
Abstract translation: 在各种实施例中,公开了用于从种子生成相关数据集合的集合的系统,方法和技术。 可以根据种子生成策略或规则生成种子。 可以通过例如检索种子,将种子添加到第一群集,检索群集策略或规则,以及基于聚类策略将相关数据和/或数据实体添加到群集来生成群集。 可以基于给定簇中的数据的属性来生成各种聚类分数。 此外,可以基于与集群相关联的各种聚类分数来生成集群组合。 群集可能会根据群集元素进行排名。 各种实施例可以使分析人员能够发现与数据集群相关的各种见解,并且可以适用于各种任务,包括例如税欺诈检测,信标恶意软件检测,恶意软件用户代理检测和/或活动趋势检测 其他。
-
公开(公告)号:US12238136B2
公开(公告)日:2025-02-25
申请号:US18504392
申请日:2023-11-08
Applicant: Palantir Technologies Inc.
Inventor: Harkirat Singh , Geoffrey Stowe , Stefan Bach , Matthew Sprague , Michael Kross , Adam Borochoff , Parvathy Menon , Michael Harris
IPC: G06Q40/00 , G06F16/23 , G06F16/242 , G06F16/2457 , G06F16/2458 , G06F16/26 , G06F16/28 , G06F16/335 , G06F16/35 , G06F16/355 , G06F16/9535 , G06Q10/10 , G06Q20/38 , G06Q20/40 , G06Q30/018 , G06Q40/02 , G06Q40/03 , G06Q40/10 , G06Q40/12 , H04L9/40
Abstract: In various embodiments, systems, methods, and techniques are disclosed for generating a collection of clusters of related data from a seed. Seeds may be generated based on seed generation strategies or rules. Clusters may be generated by, for example, retrieving a seed, adding the seed to a first cluster, retrieving a clustering strategy or rules, and adding related data and/or data entities to the cluster based on the clustering strategy. Various cluster scores may be generated based on attributes of data in a given cluster. Further, cluster metascores may be generated based on various cluster scores associated with a cluster. Clusters may be ranked based on cluster metascores. Various embodiments may enable an analyst to discover various insights related to data clusters, and may be applicable to various tasks including, for example, tax fraud detection, beaconing malware detection, malware user-agent detection, and/or activity trend detection, among various others.
-
公开(公告)号:US20240146761A1
公开(公告)日:2024-05-02
申请号:US18504392
申请日:2023-11-08
Applicant: Palantir Technologies Inc.
Inventor: Harkirat Singh , Geoffrey Stowe , Stefan Bach , Matthew Sprague , Michael Kross , Adam Borochoff , Parvathy Menon , Michael Harris
IPC: H04L9/40 , G06F16/23 , G06F16/242 , G06F16/2457 , G06F16/2458 , G06F16/26 , G06F16/28 , G06F16/335 , G06F16/35 , G06F16/9535 , G06Q10/10 , G06Q20/38 , G06Q20/40 , G06Q30/018 , G06Q40/00 , G06Q40/02 , G06Q40/03 , G06Q40/10 , G06Q40/12
CPC classification number: H04L63/145 , G06F16/23 , G06F16/244 , G06F16/24578 , G06F16/2465 , G06F16/26 , G06F16/283 , G06F16/285 , G06F16/287 , G06F16/288 , G06F16/335 , G06F16/35 , G06F16/355 , G06F16/9535 , G06Q10/10 , G06Q20/382 , G06Q20/4016 , G06Q30/0185 , G06Q40/00 , G06Q40/02 , G06Q40/03 , G06Q40/10 , G06Q40/123
Abstract: In various embodiments, systems, methods, and techniques are disclosed for generating a collection of clusters of related data from a seed. Seeds may be generated based on seed generation strategies or rules. Clusters may be generated by, for example, retrieving a seed, adding the seed to a first cluster, retrieving a clustering strategy or rules, and adding related data and/or data entities to the cluster based on the clustering strategy. Various cluster scores may be generated based on attributes of data in a given cluster. Further, cluster metascores may be generated based on various cluster scores associated with a cluster. Clusters may be ranked based on cluster metascores. Various embodiments may enable an analyst to discover various insights related to data clusters, and may be applicable to various tasks including, for example, tax fraud detection, beaconing malware detection, malware user-agent detection, and/or activity trend detection, among various others.
-
公开(公告)号:US11637867B2
公开(公告)日:2023-04-25
申请号:US17129563
申请日:2020-12-21
Applicant: Palantir Technologies Inc.
Inventor: Jacob Albertson , Melody Hildebrandt , Harkirat Singh , Shyam Sankar , Rick Ducott , Peter Maag , Marissa Kimball
Abstract: Systems and techniques for sharing security data are described herein. Security rules and/or attack data may be automatically shared, investigated, enabled, and/or used by entities. A security rule may be enabled on different entities comprising different computing systems to combat similar security threats and/or attacks. Security rules and/or attack data may be modified to redact sensitive information and/or configured through access controls for sharing.
-
公开(公告)号:US11336681B2
公开(公告)日:2022-05-17
申请号:US16898850
申请日:2020-06-11
Applicant: Palantir Technologies Inc.
Inventor: Harkirat Singh , Geoffrey Stowe , Brendan Weickert , Matthew Sprague , Michael Kross , Adam Borochoff , Parvathy Menon , Michael Harris
IPC: G06Q40/00 , H04L29/06 , G06F16/2457 , G06F16/23 , G06F16/242 , G06F16/28 , G06F16/9535 , G06Q10/10 , G06Q40/02 , G06F16/335 , G06F16/35 , G06F16/26 , G06F16/2458 , G06Q20/40 , G06Q30/00 , G06Q20/38
Abstract: In various embodiments, systems, methods, and techniques are disclosed for generating a collection of clusters of related data from a seed. Seeds may be generated based on seed generation strategies or rules. Clusters may be generated by, for example, retrieving a seed, adding the seed to a first cluster, retrieving a clustering strategy or rules, and adding related data and/or data entities to the cluster based on the clustering strategy. Various cluster scores may be generated based on attributes of data in a given cluster. Further, cluster metascores may be generated based on various cluster scores associated with a cluster. Clusters may be ranked based on cluster metascores. Various embodiments may enable an analyst to discover various insights related to data clusters, and may be applicable to various tasks including, for example, tax fraud detection, beaconing malware detection, malware user-agent detection, and/or activity trend detection, among various others.
-
-
-
-
-
-
-
-
-