Abstract:
A system and method manipulate micro objects. A field generator is configured to generate a force field varying in both space and time to manipulate the micro objects on a substrate. The substrate is not permanently affixed to the field generator and allows the force field to pass through the substrate.
Abstract:
A stressed substrate for transient electronic systems (i.e., electronic systems that visually disappear when triggered to do so) that includes one or more stress-engineered layers that store potential energy in the form of a significant internal stress. An associated trigger mechanism is also provided that, when triggered, causes an initial fracture in the stressed substrate, whereby the fracture energy nearly instantaneously travels throughout the stressed substrate, causing the stressed substrate to shatter into multiple small (e.g., micron-sized) pieces that are difficult to detect. The internal stress is incorporated into the stressed substrate through strategies similar to glass tempering (for example through heat or chemical treatment), or by depositing thin-film layers with large amounts of stress. Patterned fracture features are optionally provided to control the final fractured particle size. Electronic systems built on the substrate are entirely destroyed and dispersed during the transience event.
Abstract:
First and second chiplets are positioned along a surface to respectively cover first and second electrodes. The first electrode is activated to cause an attraction force between the first electrode and the first chiplet. The second electrode is deactivated allowing the second chiplet to rotate on the surface. While the first electrode is activated and the second electrode is deactivated, a rotation field is applied to cause the second chiplet to be oriented at a desired orientation angle, the first chiplet being prevented from rotating by the attraction force.
Abstract:
A micro-assembly system includes a reservoir that stores a supply of chiplets suspended in a suspension fluid. Each of the chiplets has a bottom major surface that defines a right side down orientation. The system includes a delivery surface or belt that delivers the chiplets from the reservoir to an assembly surface. The system includes a micro assembler that may arrange the first subset of the chiplets in a pattern on the assembly surface. The micro assembler moves the first subset of chiplets towards a subsequent assembly stage. The micro assembler has an array of field generators fixed relative to the assembly surface that move the first subset of the chiplets along the assembly surface in response to signals applied to each of the field generators.
Abstract:
A system includes a separation tool that separates a carrier wafer to form a plurality of chiplet carriers. The carrier wafer having sheets of thin film material attached. A sensor and processor of the system determine an orientation of the portions of the sheets of thin film material relative to the chiplets to determine a mapping therebetween. A fluid carrier of the system places the chiplet carriers on an assembly surface in a disordered pattern. The system includes a micro assembler that arranges the chiplet carriers from the disordered pattern to a predetermined pattern based on the mapping. A carrier of the system transfers the portions of the thin film material from the chiplet carriers to a target substrate.
Abstract:
An apparatus includes a transfer substrate with two or more transfer elements. Each of the transfer elements includes an adhesion element having a first surface adhesion at a first temperature and a second surface adhesion at a second temperature. The second surface adhesion less than the first surface adhesion. Each transfer element has a thermal element operable to change a temperature of the adhesion element in response to an input. A controller is coupled to provide the inputs to the thermal elements of the two or more transfer elements to cause a subset of the transfer elements to selectably hold objects to and release the objects from the transfer substrate in response to changes between the first and second surface adhesion of the subset of the transfer elements.
Abstract:
A capacitive image sensor includes a sensor array having capacitive image pixels. Each pixel has a two-transistor configuration including a pixel selection transistor and a source follower transistor. The pixel selection transistor activates the source follower transistor. The source follower is coupled to a variable capacitance that affects an input impedance of the source follower. An AC current is source is used to interrogate the activated source follower to determine an output impedance of the source follower. The output impedance is a function of the input impedance and the output impedance is representative of the nearness of an object.
Abstract:
An impedance readout circuit receives an input signal from a pixel, or an array of pixels. The circuit includes an amplifier to amplify the input signal and detects a DC component of the input signal. The circuit establishes an AC sampling voltage at the output of the amplifier enabling a filter of the circuit to determine an AC current component of the amplifier output. The AC current component is inversely proportional to the output impedance of the pixel.
Abstract:
A method of forming a charge pattern on a microchip includes depositing a material on the surface of the microchip, and using an external device to develop charge in the material.
Abstract:
Disclosed herein are implementations of a particles-transferring system, particle transferring unit, and method of transferring particles in a pattern. In one implementation, a particles-transferring system includes a first substrate including a first surface to support particles in a pattern, particle transferring unit including an outer surface to be offset from the first surface by a first gap, and second substrate including a second surface to be offset from the outer surface by a second gap. The particle transferring unit removes the particles from the first surface in response to the particles being within the first gap, secures the particles in the pattern to the outer surface, and transports the particles in the pattern. The second substrate removes the particles in the pattern from the particle transferring unit in response to the particles being within the second gap. The particles are to be secured in the pattern to the second surface.