Abstract:
A charger circuit for providing a charging current and voltage to a battery includes a power delivery unit, a capacitive power conversion circuit and a reverse blocking switch circuit. The power delivery unit converts an input power to a DC voltage and current. The capacitive power conversion circuit includes a conversion switch circuit including plural conversion switches coupled with one or more conversion capacitors, and a conversion control circuit. The DC current is regulated to a predetermined DC current level, and the conversion control circuit controls the connections of the plural conversion capacitors such that the charging current is scaled-up of the predetermined DC current level substantially by a current scale-up factor. The reverse blocking switch circuit is coupled in series with the capacitive power conversion circuit. The body diode of the reverse blocking switch is reversely coupled to the body diode of the conversion switch.
Abstract:
A control circuit for controlling a power supply circuit to provide power to a system device which includes a communication circuit includes: a pulse width modulation (PWM) controller configured to switch a transformer of the power supply circuit to generate a first output voltage; and a switched capacitor converter configured to generate a second output voltage according to the first output voltage. The second output voltage provides power to the communication circuit, wherein the communication circuit generates a power saving signal to control the PWM controller and the switched capacitor converter. When the power saving signal is enabled, the first output voltage is decreased and a duty ratio of the switched capacitor converter is increased.
Abstract:
A light emitting device driver circuit includes: a power conversion circuit, an error amplifier circuit, a sample-and-hold circuit, a load current generation circuit and a feed-forward capacitor. When the light emitting device driver circuit is in a disable phase, the sample-and-hold circuit connects a feedback signal with a second reference voltage and the sample-and-hold circuit disconnects the feedback signal from a load node, whereby the feed-forward capacitor samples a sample voltage and holds it after the disable phase transits to an enable phase. In the enable phase, the sample-and-hold circuit disconnects the feedback signal from the second reference voltage and the sample-and-hold circuit connects the feedback signal with the load node, so that during a predetermined period following the transition, there is a sufficient difference between two input terminals of the error amplifier circuit so that the load current is raised to a desired current level within the predetermined period.
Abstract:
A light emitting device driver circuit includes: a power conversion circuit, an error amplifier circuit, a sample-and-hold circuit, a load current generation circuit and a feed-forward capacitor. When the light emitting device driver circuit is in a disable phase, the sample-and-hold circuit connects a feedback signal with a second reference voltage and the sample-and-hold circuit disconnects the feedback signal from a load node, whereby the feed-forward capacitor samples a sample voltage and holds it after the disable phase transits to an enable phase. In the enable phase, the sample-and-hold circuit disconnects the feedback signal from the second reference voltage and the sample-and-hold circuit connects the feedback signal with the load node, so that during a predetermined period following the transition, there is a sufficient difference between two input terminals of the error amplifier circuit so that the load current is raised to a desired current level within the predetermined period.
Abstract:
A control circuit of a power converter includes: a zero current detection circuit for detecting a current flowing between an inductor and a voltage output terminal of the power converter to generate a zero current detection signal; an adjusting circuit for generating an adjustment signal according to the zero current detection signal; a clock signal generating circuit for adjusting a frequency of a clock signal according to the adjustment signal; a periodical signal generating circuit for generating a periodical signal according to the clock signal; an error detection circuit for generating an error signal; and a control signal generating circuit for generating a control signal to control operations of a power switch. If the and amount of pulses generated by the zero current detection circuit satisfy a predetermined condition, the adjusting circuit switches the power converter's operation mode from DCM to CCM.
Abstract:
LED dimming control circuit and method compensate LED current or LED average current by LED characteristics to improve dimming efficiency and performance. LED characteristic related look-up tables are stored to provide compensation values, and input LED current setting information is compensated by the compensation values to generate corrected LED current setting information for determining LED brightness.
Abstract:
A switched capacitor converter includes plural switch units. The switch units are configured to switch a coupling relationship of a capacitor between a first power and a second power, wherein at least one of the switch units includes a switch circuit. The switch circuit includes a first switch, a second switch, and a switch driving circuit, wherein the conduction resistance of the first switch is greater than the conduction resistance of the second switch, and the parasitic capacitance of the first switch is less than the parasitic capacitance of the second switch. The switch driving circuit turns on the first switch before the second switch is turned on and/or turns off the first switch after the second switch is turned off, such that the switching loss of the switch circuit is less than a predetermined target value.
Abstract:
A multi-mode power system includes a battery module, a first conversion circuit, and a second conversion circuit. The battery module includes a battery path switch and a battery group. The first conversion circuit includes switches and a first capacitor, wherein the switches include the battery path switch. The multi-mode power system operates in one of plural operation mode combinations, wherein when the first conversion circuit operates in a first outgoing mode or a first bypass mode, the second conversion circuit operates in a second incoming mode, a second outgoing mode, or a second bypass mode; when the first conversion circuit operates in a first incoming mode, the second conversion circuit operates in the second incoming mode or the second bypass mode.
Abstract:
A control circuit for controlling a power supply circuit to provide power to a system device which includes a communication circuit includes: a pulse width modulation (PWM) controller configured to switch a transformer of the power supply circuit to generate a first output voltage; and a switched capacitor converter configured to generate a second output voltage according to the first output voltage. The second output voltage provides power to the communication circuit, wherein the communication circuit generates a power saving signal to control the PWM controller and the switched capacitor converter. When the power saving signal is enabled, the first output voltage is decreased and a duty ratio of the switched capacitor converter is increased.
Abstract:
A charging circuit for providing a charging current to a battery includes a power delivery unit and a capacitive power conversion circuit. The power delivery unit converts an input power to a DC output voltage and current, and regulates the DC output current to a predetermined output current level. The capacitive power conversion circuit includes a conversion switch circuit including plural conversion switches coupled to one or more capacitors, and a conversion control circuit which operates the plural conversion switches in plural conversion periods to connect the one or more capacitors between a pair of nodes selected from plural voltage division nodes, the DC output voltage, and a ground node periodically, so that the level of the charging current is scaled-up of the predetermined output current level.