Abstract:
An organic light emitting diode, including a first electrode and a second electrode facing each other; an emission layer between the first electrode and the second electrode; and a hole injection layer between the first electrode and the emission layer, the hole injection layer including a dipole material including a first component and a second component that have different polarities.
Abstract:
An organic light emitting diode device includes an emission layer between first and second electrodes, a first auxiliary layer, and a second auxiliary layer. The first electrode includes a silver-magnesium alloy having a greater content of silver than magnesium. The first auxiliary layer is between the first electrode and emission layer, and includes an inorganic material. The second auxiliary layer is between the first electrode and first auxiliary layer, and includes a material having a work function of less than or equal to about 4.0 eV.
Abstract:
A quantum-dots containing multi-component inorganic oxide thin film is provided to include an amorphous inorganic oxide bulk region and a plurality of crystalline inorganic oxide regions, wherein the crystalline inorganic oxide regions are discontinuously formed to be surrounded by the amorphous inorganic oxide of the bulk region.
Abstract:
An organic light emitting diode, including a first electrode; a second electrode facing the first electrode, the second electrode including magnesium; an emission layer between the first electrode and the second electrode; and an electron injection layer between the second electrode and the emission layer, the electron injection layer including a dipole material including a first component and a second component having different polarities, the dipole material including halide, and a content of the magnesium included in the second electrode being in a range of from 10 to 40 volume %.
Abstract:
An organic light emitting diode includes: a first electrode; a second electrode facing the first electrode; a light emission layer between the first electrode and the second electrode; an electron injection layer between the second electrode and the light emission layer; and a buffer layer between the electron injection layer and the second electrode, where the electron injection layer includes a dipolar material and a first metal, and the buffer layer includes a metal having a work function of 4.0 eV or less.
Abstract:
An organic light emitting diode display includes: a substrate; an organic light emitting element on the substrate; and a capping layer on the organic light emitting element and including a high refraction layer formed of an inorganic material having a refractive index which is equal to or greater than about 1.7 and equal to or less than about 6.0, wherein the inorganic material includes at least one selected from CuI, thallium iodide (TlI), AgI, CdI2, HgI2, SnI2, PbI2, BiIa, ZnI2, MnI2, FeI2, CoI2, NiI2, aluminium iodide (AlI3), thorium(IV) iodide (ThI4), uranium triiodide (UI3), MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, SnS, PbS, CdS, CaS, ZnS, ZnTe, PbTe, CdTe, SnSe, PbSe, CdSe, CuO, Cu2O, WO3, MoO3, SnO2, Nb2O5, Ag2O, CdO, CoO, Pr2O3, Bi2O3, Fe2O3, AlAs, GaAs, InAs, GaP, InP, AlP, AlSb, GaSb, and InSb.
Abstract:
A light emitting diode including a first electrode; a second electrode overlapping the first electrode; an emission layer positioned between the first electrode and the second electrode; and an electron transporting region positioned between the second electrode and the emission layer, wherein the electron transporting region includes a tellurium compound of a rare earth metal.
Abstract:
A light-emitting diode includes a first electrode, a second electrode overlapping the first electrode, a first emission layer and a second emission layer provided between the first electrode and the second electrode, and a first charge generating layer provided between the first emission layer and the second emission layer, the first charge generating layer including a p-type charge generating layer and an n-type charge generating layer. The n-type charge generating layer may include an organic material and an inorganic material doped to the organic material, and the inorganic material may include a lanthanide metal or an alkali earth metal, and an alkali halide.
Abstract:
A light emitting diode includes a first electrode overlapping a second electrode, an emission layer between the first and second electrodes. a first hole injection layer and a second hole injection layer between the first electrode and the emission layer, and a first hole transporting layer between the first hole injection layer and the second hole injection layer. Each of the first and second hole injection layers includes an inorganic dipole material. At least one of the first hole injection layer or the second hole injection layer including an organic material.
Abstract:
An exemplary embodiment of the present disclosure provides a light emitting diode including: a first electrode; a second electrode configured to overlap the first electrode; an emission layer between the first electrode and the second electrode; and an electron-injection layer between the emission layer and the first electrode, wherein the electron-injection layer includes a compound XIn, in XIn the subscript n is an integer which is in a range of 1 to 3, and X includes a lanthanide element.