Abstract:
A device controller included in a storage device includes a host controller connected to a host memory, a memory controller connected to a plurality of nonvolatile memory devices, a protocol controller configured to control data transfer between the host controller and the plurality of nonvolatile memory devices, and to perform data memory access to a data region of the host memory and non-data memory access to a non-data region of the host memory through the host controller, and a scheduler configured to re-order the data memory access and the non-data memory access such that the non-data memory access to the non-data region is performed after the data memory access to a data chunk has completed, the data chunk being successive data that is allocated within the data region by a physical region page (PRP).
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). An operation method of a receiving device in a wireless system includes receiving a polar codeword generated by a polar code, generating a majority of decoding paths by decoding a bit value corresponding to one index that is selected among a majority of indexes indicating respective bits included in the polar codeword, determining a first candidate group that includes at least one decoding path among the majority of decoding paths, and determining, as a second candidate group, at least one decoding path passing a CRC check among the first candidate group. A number of the at least one decoding path included in the first candidate group is determined based on a result of a CRC check performed prior to the CRC check.
Abstract:
A method and an apparatus for encoding and decoding packets using a polar code is provided. The method includes acquiring a plurality of blocks constituting the packet, extracting a plurality of codeword candidates corresponding to the blocks, selecting some of the codeword candidates in a descending order of posterior probability among the codeword candidates corresponding to the blocks, combining the selected codeword candidates into a plurality of codeword combinations, selecting a codeword combination having the highest posterior probability and passed Cyclic Redundancy Check (CRC) test without error among the plurality of codeword combinations, and decoding the selected codeword combination. The packet encoding and decoding apparatus and method of the present disclosure is capable of encoding and decoding packets in a unit of blocks efficiently.
Abstract:
An encoding method for encoding input information bits using an encoder implemented with concatenation of a CRC-α coder and a polar coder is provided. The method includes performing Cyclic Redundancy Check (CRC) coding on as many information bits as a determined number of CRC coding bits among input information bits and performing polar coding on the CRC-coded information bits and other information bits than the CRC-coded information bits.
Abstract:
An apparatus and method select a Device (D2D) communication mode according to whether there is signal interference. A method of operating a Transmitting (Tx) terminal, linked to a Receiving (Rx) terminal, for performing D2D communication includes confirming that the terminal is included in at least any one of groups in which links are grouped according to a link priority, receiving a result of determining whether there is a signal interference caused by at least three in-group links from the Rx terminal, and selecting a communication mode for communicating with the Rx terminal according to whether the signal interference exists.
Abstract:
An electronic device including a sensor, a first processor, and a second processor and a method for associating data with time information are provided. The method includes including receiving a notification signal corresponding to the data from the first processor, determining time information and first identification information that correspond to the notification signal in response to the reception, receiving the data and second identification information corresponding to the notification signal from the first processor, associating the data with the time information at least based on the first identification information and the second identification information, and providing the data associated with the time information to an application. Other various embodiments may also be possible.
Abstract:
The present disclosure relates to a 5th Generation (5G) or a pre-5G communication system provided to support a higher data transmission rate than a system beyond a 4th Generation (4G) communication system such as Long Term Evolution (LTE). The purpose of the present disclosure is to maximize adaptive transmission performance by designing a puncturing order and a repetition order individually in optimized order. An operation method of a transmission device for adaptive transmission of a codeword according to an embodiment of the present disclosure includes generating a codeword using a polar code and transmitting a packet including at least one codeword indicated by a repetition order when bit repetition is needed. The repetition order is determined based on at least one of channel polarization or channel quality information.