摘要:
Electrostatic image developing toner particles including: a crystalline polyester resin; a non-crystalline polyester resin; a releasing agent; and a colorant, wherein the electrostatic image developing toner particles have a glass transition temperature of 40° C. to 60° C. where the glass transition temperature is measured with a differential scanning calorimeter (DSC), and wherein the electrostatic image developing toner particles have an adhesive force between the toner particles of 1.4 mN to 2.2 mN where the adhesive force between the toner particles is measured after the electrostatic image developing toner particles have been stored at 50° C.
摘要:
A toner including: toner base particles; and an external additive, the toner base particles each comprising a binder resin and a colorant, wherein the external additive comprises non-spherical particles and spherical particles, wherein the non-spherical particles are each a secondary particle in which spherical primary particles are coalesced together, and wherein the non-spherical particles and the spherical particles in the external additive satisfy a relationship expressed by the following formula (1): 3Ca(%)
摘要:
A toner including: toner base particles; and an external additive, the toner base particles each comprising a binder resin and a colorant, wherein the external additive comprises non-spherical particles and spherical particles, wherein the non-spherical particles are each a secondary particle in which spherical primary particles are coalesced together, and wherein the non-spherical particles and the spherical particles in the external additive satisfy a relationship expressed by the following formula (1): 3Ca(%)
摘要:
A toner, containing: toner base particles; and an external additive, the toner base particles each including a binder resin and a releasing agent, wherein the external additive includes non-spherical coalesced particles in each of which primary particles are coalesced together, and wherein the coalesced particles satisfy the following formula (1): Nx/1,000×100≦30% where Nx is a number of the primary particles present alone relative to 1,000 of the coalesced particles, as observed under a scanning electron microscope after stirring 0.5 g of the coalesced particles and 49.5 g of a carrier placed in a 50 mL bottle for 10 minutes by means of a mixing and stirring device at 67 Hz.
摘要:
A toner including a binder resin, a coloring agent, a releasing agent, and an additive, the releasing agent having a loss on heat of from 0.5 to 2.0% after being left at 165° C. for 10 minutes, the ratio (P2850/P828) of an absorption strength of a peak at 2,850 cm−1 ascribed to the releasing agent to an absorption strength of a peak at 828 cm31 1 ascribed to the binder resin ranging from 0.03 to 0.25 wherein the ratio is measured according to Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), and an amount of heat of melting ascribable to the releasing agent according to differential scanning calorimetry (DSC) ranging from 2 to 25 mj/mg.
摘要:
The toner includes a binder resin; a colorant; and a release agent. The first inter-particle force Fp(A) of the toner, which is measured under an environmental condition of 23° C. and 60% RH after the toner is pressed for 1 minute at 25° C. under a compression stress of 15 kg/cm2, is from 1.0×10−9 (N) to 1.0×10−6 (N). The difference (Fp(B)−Fp(A)) between the second inter-particle force Fp(B) of the toner, which is measured under the environmental condition of 23° C. and 60% RH after the toner is pressed for 1 minute at 50° C. under a compression stress of 15 kg/cm2, and the first inter-particle force Fp(A) is 0 (N) to 1.0×10−7 (N).
摘要:
The toner includes a binder resin; a colorant; and a release agent. The first inter-particle force Fp(A) of the toner, which is measured under an environmental condition of 23° C. and 60% RH after the toner is pressed for 1 minute at 25° C. under a compression stress of 15 kg/cm2, is from 1.0×10−9 (N) to 1.0×10−6 (N). The difference (Fp(B)−Fp(A)) between the second inter-particle force Fp(B) of the toner, which is measured under the environmental condition of 23° C. and 60% RH after the toner is pressed for 1 minute at 50° C. under a compression stress of 15 kg/cm2, and the first inter-particle force Fp(A) is 0 (N) to 1.0×10−7 (N).
摘要:
Provided is a static charge image developing toner of which flowing start temperatures (Tfb) measured with a flow tester satisfy relational formulae below: Tfb(2-5)=100−[Tfb(5 Kg)/Tfb(2 Kg)]×100 (Formula 1) 2.00≦Tfb(2-5)≦6.50 (Formula 2) where in Formula 1 above, Tfb(2 Kg) and Tfb(5 Kg) represent flowing start temperatures of the static charge image developing toner when 1.5 g of the toner is heated at a temperature raising rate of 3° C./minute and let to flow out from a die having a diameter of 1.0 mm under loads of 2 Kg and 5 Kg respectively.
摘要:
A toner, including a parent particulate material including a colorant and a binder resin, and an external additive including particles having an average primary particle diameter from 80 to less than 150 nm in an amount of from 0.03 to 2% by number, particles having an average primary particle diameter from 5 nm to less than 15 nm in an amount of from 50 to 95% by number, and particles having an average primary particle diameter from 15 to less than 40 nm in an amount of from 5 to 40% by number, and the particles having an average primary particle diameter from 80 to less than 150 nm include particles having an average primary particle diameter not less than 200 nm in an amount of from 10 to 30% by number, and have a weight reduction rate not greater than 3.00% when heated from 30 to 250° C.
摘要:
A developing device, including: a developer bearing member, which is disposed opposite to an electrostatic latent image bearing member and which bears thereon a developer for developing an electrostatic latent image formed on the electrostatic latent image bearing member and conveys the developer to a developing region, wherein the developer includes a toner and a carrier, the toner containing: a toner base containing a binder resin and a colorant; and an external additive, wherein the external additive contains coalescent particles each made up of a plurality of coalescing primary particles, and wherein a work function Wc of the carrier and a work function Ws of the developer bearing member satisfy a relationship of the following formula (1): Ws−Wc≧0.4 eV (1).