Abstract:
A method and system for printing a three-dimensional part, which includes producing a developed layer of a part material with one or more electrophotography engines of an additive manufacturing system, transferring the developed layer from the one or more electrophotography engines to a transfer assembly of the additive manufacturing system sintering the developed layer at the transfer assembly to produce a sintered contiguous film, cooling the sintered contiguous film down to a transfer temperature, and pressing the cooled sintered contiguous film into contact with an intermediate build surface of the three-dimensional part with a low applied pressure.
Abstract:
An additive manufacturing system comprising a transfer medium configured to receive the layers from a imaging engine, a heater configured to heat the layers on the transfer medium, and a layer transfusion assembly that includes a build platform, and is configured to transfuse the heated layers onto the build platform in a layer-by-layer manner to print a three-dimensional part.
Abstract:
An additive manufacturing system comprising a transfer medium configured to receive the layers from a imaging engine, a heater configured to heat the layers on the transfer medium, and a layer transfusion assembly that includes a build platform, and is configured to transfuse the heated layers onto the build platform in a layer-by-layer manner to print a three-dimensional part.
Abstract:
A platen assembly for use in an additive manufacturing system, which includes a platen plate that is preferably secured to a gantry mechanism of the additive manufacturing system, and having a top surface, and one or more magnets secured to the platen plate and configured to generate one or more magnetic fields at the top surface of the platen plate. The platen gantry is configured to magnetically couple interchangeable and replaceable build sheets to the top surface of the platen plate due to the one or more generated magnetic fields, and where the magnetically-coupled build sheets are configured to receive the printed layers from the printing mechanism.
Abstract:
An additive manufacturing system comprising a transfer medium configured to receive the layers from a imaging engine, a heater configured to heat the layers on the transfer medium, and a layer transfusion assembly that includes a build platform, and is configured to transfuse the heated layers onto the build platform in a layer-by-layer manner to print a three-dimensional part.
Abstract:
An additive manufacturing system comprising a transfer medium configured to receive the layers from a imaging engine, a heater configured to heat the layers on the transfer medium, and a layer transfusion assembly that includes a build platform, and is configured to transfuse the heated layers onto the build platform in a layer-by-layer manner to print a three-dimensional part.
Abstract:
A print head assembly that includes a print head carriage and multiple, replaceable print heads that are configured to be removably retained in receptacles of the print head carriage. The print heads each include a cartridge assembly and a liquefier pump assembly retained by the cartridge assembly.
Abstract:
An additive manufacturing system comprising a transfer medium configured to receive the layers from a imaging engine, a heater configured to heat the layers on the transfer medium, and a layer transfusion assembly that includes a build platform, and is configured to transfuse the heated layers onto the build platform in a layer-by-layer manner to print a three-dimensional part.
Abstract:
A method and system for printing a three-dimensional part, which includes producing a developed layer of a part material with one or more electrophotography engines of an additive manufacturing system, transferring the developed layer from the one or more electrophotography engines to a transfer assembly of the additive manufacturing system sintering the developed layer at the transfer assembly to produce a sintered contiguous film, cooling the sintered contiguous film down to a transfer temperature, and pressing the cooled sintered contiguous film into contact with an intermediate build surface of the three-dimensional part with a low applied pressure.
Abstract:
A method and system for printing a three-dimensional part, which includes printing a plurality of successive layers of the three-dimensional part with the additive manufacturing system based on bitslices in a bitslice stack, measuring surface heights of the successive layers after each of the successive layers are printed, determining differences between the measured surface heights and predicted stack heights of the bitslices, identifying one or more topographical error regions based on the determined differences, and modifying the bitslice stack to compensate for the one or more topographical error regions.