Abstract:
A fingerprint identification device includes a substrate, at least two electrode areas, at least one dedicated sensing signal line, plural electrode selection switch groups, and plural signal lines. Each electrode area has plural electrodes. The signal lines are divided into plural first directional signal lines and plural second directional signal lines. The first directional signal lines are perpendicular to the second directional signal lines. The plural electrode selection switch groups sequentially or dynamically select at least one electrode as a sensing electrode block in each electrode area. The plural electrode selection switch groups configure the electrodes surrounding the sensing electrode block as at least two corresponding deflection electrode blocks. Each sensing electrode block is corresponding to at least two deflection electrode blocks. Each deflection electrode block has plural electrodes.
Abstract:
A self-capacitance input device with hovering touch includes a sensing electrode layer, a reflection and deflection electrode layer, an insulation layer, and an amplifier with a gain greater than zero. The sensing electrode layer has a plurality of sensing electrodes on one side for sensing a touch or approach of an external object. The reflection and deflection electrode layer is disposed on the other side of the sensing electrode layer and has at least one reflection and deflection electrode. The insulation layer is disposed between the sensing electrode layer and the reflection and deflection electrode layer. The amplifier has an output coupled to the reflection and deflection electrode layer.
Abstract:
A display device with fingerprint identification and touch detection includes a first substrate, a second substrate parallel to the first substrate, a display material layer configured between the first substrate and the second substrate, and a thin film transistor and sensing electrode layer. The thin film transistor and sensing electrode layer is disposed at one surface of the first substrate facing the display material layer. The thin film transistor and sensing electrode layer has a plurality of sensing electrodes for performing fingerprint identification sensing and touch sensing at the same time.
Abstract:
A mobile device with high-accuracy fingerprint identification includes a display panel, a transparent protection layer, and a fingerprint identification device. The transparent protection layer has one surface attached to the display panel. The fingerprint identification device is attached to the surface of the transparent protection layer for detecting a user fingerprint. The fingerprint identification device includes a flexible substrate, a fingerprint sensor, and a detector. The fingerprint sensor is disposed on the flexible substrate for sensing the user fingerprint to generate a fingerprint image. The detector is disposed on the flexible substrate and electrically connected to the fingerprint sensor for distinguishing a minute parasitic capacitance variation generated by the fingerprint sensor. A part of the flexible substrate arranged with the fingerprint sensor is closely attached to the transparent protection layer, and a part of the flexible substrate arranged with the detector is separately attached to the transparent protection layer.
Abstract:
An electrophoresis display with tapered micro partition structure includes a control substrate having a first face and a second face, a driving circuit layer, a control electrode layer, and an electrophoresis layer. The driving circuit layer, the control electrode layer, and the electrophoresis layer are sequentially arranged on the second face. The electrophoresis layer includes a micro partition structure arranged on the control substrate and made from polymer material. The micro partition structure includes a plurality of partition walls to define chambers for accommodating a colloidal solution. The sectional width of the partition wall decreases with a layer number of a polymer stacks forming the partition wall increases.
Abstract:
An electrophoresis display with storage capacitor having transparent electrode includes a control substrate having a first face and a second face, a driving circuit layer, a control electrode layer, an electrophoresis layer, and an opposite substrate. The driving circuit layer includes a plurality of storage capacitors. At least the storage capacitors corresponding to the viewing area of the electrophoresis display have a transparent first electrode, a transparent second electrode and an insulating layer between the transparent first electrode and the transparent second electrode.
Abstract:
A fingerprint sensing apparatus includes a plurality of fingerprint sensing electrodes, a plurality of data lines respectively sandwiched by a first capacitance-shielding wire and a second capacitance-shielding wire, a fingerprint sensing circuit including a driver circuit with a gain larger than zero or equal to zero. During fingerprint sensing, the fingerprint sensing circuit sends a capacitance-exciting signal to a selected fingerprint sensing electrode, receiving a fingerprint sensing signal from the selected fingerprint sensing electrode, processing the fingerprint sensing signal with the driver circuit into a capacitance-eliminating signal and applying the capacitance-eliminating signal to the first capacitance-shielding wire and the second capacitance-shielding wire respectively. The capacitance between the first/second capacitance-shielding wire and the corresponding data line can be greatly reduced because the voltages at the first/second capacitance-shielding wire have same phase as that of corresponding data line, thus greatly enhance the accuracy of the fingerprint sensing apparatus.
Abstract:
An ESD protection circuit includes at least two unidirectional conduction units arranged between an IO node of an integrated circuit and a positive voltage node, where a first connection node is between the at least two unidirectional conduction units; at least two unidirectional conduction units arranged between the IO node and a negative voltage node, where a second connection node is between the at least two unidirectional conduction units; and a voltage tracking circuit. The input of the voltage tracking circuit is electrically connected to the IO node and the output of the voltage tracking circuit is electrically connected to at least one of the first connection end and the second connection end. By reducing the voltage difference between the IO node and the first connection end or between the IO node and the second connection end, the parasite capacitance associated with the unidirectional conduction unit can be reduced.
Abstract:
A fingerprint identification device includes a substrate, at least two electrode areas, at least one dedicated sensing signal line, plural electrode selection switch groups, and plural signal lines. Each electrode area has plural electrodes. The signal lines are divided into plural first directional signal lines and plural second directional signal lines. The first directional signal lines are perpendicular to the second directional signal lines. The plural electrode selection switch groups sequentially or dynamically select at least one electrode as a sensing electrode block in each electrode area. The plural electrode selection switch groups configure the electrodes surrounding the sensing electrode block as at least two corresponding deflection electrode blocks. Each sensing electrode block is corresponding to at least two deflection electrode blocks. Each deflection electrode block has plural electrodes.
Abstract:
A fingerprint identification apparatus having a conductive structure includes an insulated casing, a conductive wire, and a fingerprint identification module. The insulated casing has a first surface with a fingerprint detection region and a second surface. The conductive wire has a first wire segment and a second wire segment. The first wire segment forms on the first surface and contacts with the fingerprint detection region. The second wire segment forms on the second surface and electrically connects to the first wire segment. The fingerprint identification module is disposed on the second surface and electrically connected to the second wire segment. Therefore, the conductive structure for fingerprint identification is provided to increase accuracy and security of the fingerprint identification and reduce manufacturing costs.