摘要:
The invention relates to a method for determining an ophthalmic lens for a person (i1, i2, i3) to wear said lens, comprising the following steps: i) determination of the size (T1, T2, T3) or height of the eyes (H1, H2, H3) of the person to wear the lens; and ii) calculation of at least one characteristic of the ophthalmic lens according to the size (T1, T2, T3) or the height of the eyes (H1, H2, H3) of the person to wear the lens. The ophthalmic lens can be progressive strength or unifocal. The invention also relates to an optimisation method and a method for producing an ophthalmic lens implementing such a definition method. The invention further relates to a set of lenses having at least one characteristic that depends on the size and the height of the eyes of the person to wear the lens.
摘要:
An ophthalmic lens (1) for a given wearer (2), intended to be worn in an eyeglass frame, comprising: a prescription control point P corresponding to a downward gaze αP of between −10° and +25° and a lateral gaze displacement βP of between −10° and +10°; an upper area (11) defined by downward gaze values, α, for the wearer (2), of between αP−30° and αP, along a downward gaze path, and by lateral gaze displacement values, β, for the wearer (2), of between βP−30° and βP+30°, parallel to a lateral gaze displacement axis, a lower area (12) defined by downward gaze values, α, for the wearer (2), of between αP and αP+30°, along a downward gaze path, and by lateral gaze displacement values, β, for the wearer (2), of between βP−30° and βP+30°, parallel to a lateral gaze displacement axis; wherein: the power of the lens at point P is substantially equal to the prescription of the wearer, the upper area has, relative to the point P, along the downward gaze path, a continuous average power variation ΔPuiSup, monotonic between the point P and a point PSup, which is the point of the maximum amplitude in the variation of the power value, as an absolute value, and where the value of the average power deviation between the points PSup and P, ΔPuiSupMax=Pui(PSup)−Pui(P), is between −0.1 and −0.4 dioptres, the lower area has, relative to the point P, along the downward gaze path, a continuous variation in the average power ΔPuiInf, monotonic between the point P and a point PInf, which is the point of the maximum amplitude in the variation of the power value, as an absolute value, and where the value of the average power deviation between the points PInf and P, ΔPujInfMax=Pui(PInf)−Pui(P), is between +0.1 and +0.4 dioptres, and the average power gradient along the downward gaze path is less than 4.10−2×ΔPuitotal, where ΔPuitotal=|ΔPuiSupMax|+ΔPuiInfMax and said average power gradient is expressed in dioptres per degree