Abstract:
An assembly for a turbine engine includes a turbine engine first component, a turbine engine second component and a flexible seal that is attached to the first component. The flexible seal at least partially seals a gap between the first component and the second component. The flexible seal includes a mount and a finger seal that sealingly engages the second component. The mount includes a boss that sealingly engages the first component.
Abstract:
An assembly for a turbine engine includes a turbine engine first component, a turbine engine second component and a seal assembly. The first component includes a groove and a groove surface. The second component includes a tongue that extends into the groove to a tongue surface. The seal assembly at least partially seals a gap between the groove surface and the tongue surface. The seal assembly includes a rope seal and a clip that attaches the rope seal to the tongue. The rope seal is arranged within the groove between the groove surface and the tongue surface.
Abstract:
A section for a gas turbine engine includes a rotating structure, a stationary structure, and a flow guide assembly arranged generally between the rotating structure and the stationary structure. A flow path is defined between the flow guide assembly and one of the rotating structure and the stationary structure. The flow guide assembly includes a plurality of apertures configured to disrupt acoustic waves of air in the flow path. A seal is configured to establish a sealing relationship between the rotating structure and the stationary structure, and wherein an inlet to the flow path is adjacent the seal. A gas turbine engine and a method of disrupting acoustic waves in a flow path of a gas turbine engine are also disclosed.
Abstract:
An assembly for a gas turbine engine according to an example of the present disclosure includes, among other things, a seal arc segment that has a sealing portion and a pair of opposed rails extending outwardly from the sealing portion. The sealing portion includes a sealing face dimensioned to bound a core flow path and has a backside face opposed to the sealing face. The backside face includes a first localized region, a second localized region between the pair of rails, and a third localized region. A support includes a mounting portion and a first interface portion. At least one retention pin is dimensioned to engage the first interface portion of the support and at least one of the pair of rails such that the seal arc segment is carried by the at least one retention pin. A support plate is arranged relative to the support such that the at least one retention pin is trapped between the support plate and the support. A cooling cavity is established between the support, the support plate, and the second localized region. A method of sealing is also disclosed.
Abstract:
A blade outer air seal assembly includes a blade outer air seal that has a plurality of segments that extend circumferentially about an axis and mounted in a carrier. At least two of the plurality of segments have a first wall that extends radially outward from a base portion. The base portion has a radially inner side and a radially outer side. A heat shield abuts the radially outer side of the at least two segments. The heat shield is formed from a ceramic material.
Abstract:
An assembly for a turbine engine includes a turbine engine first component, a turbine engine second component and a seal assembly. The first component includes a groove and a groove surface. The second component includes a tongue that extends into the groove to a tongue surface. The seal assembly at least partially seals a gap between the groove surface and the tongue surface. The seal assembly includes a rope seal and a clip that attaches the rope seal to the tongue. The rope seal is arranged within the groove between the groove surface and the tongue surface.
Abstract:
A seal assembly for a gas turbine engine includes an engine static structure. First and second members fluidly separate cavities from one another. A seal assembly is captured by the engine structure. The seal assembly includes a carrier and a seal that engages the first member. The second member is captured by the carrier.
Abstract:
A component for a gas turbine engine according to an example of the present disclosure includes, among other things, a body having circumferential sides between a forward face and an aft face, each of the circumferential sides defining a mate face, an attachment member extending from the body, and a transition member adjacent to the body and the attachment member. The transition member and the body define a slot configured to receive a seal member. The transition member is sloped inwardly from one of the circumferential sides. A method of fabricating a gas turbine engine component is also disclosed.
Abstract:
A component assembly includes a first component that has a first hole. The first hole has a non-circular cross section. A first portion of the first hole has a first radius of curvature and a second component. A pin extends from the second component and through the first hole. The pin has a non-circular cross section. A second portion of the pin has a second radius of curvature. The first radius of curvature and the second radius of curvature are substantially the same.
Abstract:
A flow path component assembly includes a support structure. A flow path component has a plurality of segments that are arranged circumferentially about an axis and are mounted in the support structure by a carrier. At least one of the segments have a first wall axially spaced from a second wall. The first wall has first and second hooks spaced apart from one another in a circumferential direction. The second wall has third and fourth hooks spaced apart from one another in the circumferential direction. The first, second, third, and fourth hooks are in engagement with the carrier.