Abstract:
A turbine engine includes a turbine section with a low pressure turbine and a turbine case disposed about an axis. A frame assembly defines an outer cavity and an inner cavity with the outer cavity including at least one opening configured and adapted to communicate cooling air to the turbine case. A transfer tube is disposed within the outer cavity and is configured and adapted to receive cooling air. The transfer tube includes a bend configured to impart circumferential velocity to the cooling air within the outer cavity.
Abstract:
According to an aspect, a method includes predicting, by a processor, a projected oil-wetted metal temperature in a lubrication system of a gas turbine engine at shutdown based on one or more thermal models prior to shutdown of the gas turbine engine. The processor determines a coking index based on the projected oil-wetted metal temperature and a coking limit threshold associated with one or more engine components. An oil coking mitigation action is triggered as a shutdown management event of the gas turbine engine based on the coking index.
Abstract:
A system for starting a gas turbine engine of an aircraft is provided. The system includes a pneumatic starter motor, a discrete starter valve switchable between an on-state and an off-state, and a controller operable to perform a starting sequence for the gas turbine engine. The starting sequence includes alternating on and off commands to an electromechanical device coupled to the discrete starter valve to achieve a partially open position of the discrete starter valve to control a flow from a starter air supply to the pneumatic starter motor to drive rotation of a starting spool of the gas turbine engine below an engine idle speed, where the controller modulates a duty cycle of the discrete starter valve via pulse width modulation.
Abstract:
A system for controlling a start sequence of a gas turbine engine includes an electronic engine control system, a thermal model, memory, a model for determining a time period (fmotoring), and a controller. The thermal model synthesizes a heat state of the gas turbine engine. The memory records the current heat state at shutdown and a shutdown time of the gas turbine engine. The model for determining the time period is for motoring the gas turbine engine at a predetermined speed Ntarget that is less than a speed to start the gas turbine engine, where tmotoring is a function of the heat state recorded at engine shutdown and an elapsed time of an engine start request relative to a previous shutdown time. The controller modulates a starter valve to maintain the gas turbine engine within a predetermined speed range of NtargetMin to NtargetMax for homogenizing engine temperatures.
Abstract:
Aspects of the disclosure are directed to an engine of an aircraft comprising: a first seal located forward of a disk of a turbine section of the engine, a second seal located forward of the disk of the turbine section and radially inward of the first seal relative to an axial centerline of the engine, where the first and second seals are floating, non-contact seals.
Abstract:
An oil supply system for a gas turbine engine has a lubricant pump delivering lubricant to an outlet line. The outlet line is split into at least a hot line and into a cool line, with the hot line directed primarily to locations associated with an engine that are not intended to receive cooler lubricant, and the cool line directed through one or more heat exchangers at which lubricant is cooled. The cool line then is routed to a fan drive gear system of an associated gas turbine engine. A method and apparatus are disclosed. The heat exchangers include at least an air/oil cooler wherein air is pulled across the air/oil cooler to cool oil. The air/oil cooler is provided with an ejector tapping compressed air from a compressor section to increase airflow across the air/oil cooler.
Abstract:
A gas turbine engine includes a compressor section, a combustor in fluid communication with the compressor section, a turbine section in fluid communication with the combustor, a fan section configured to be driven by the turbine section via a geared architecture, and a buffer system that communicates buffer air to a portion of the gas turbine engine. The buffer system includes a first circuit configured to selectively mix a first bleed air supply having a first pressure and a second bleed air supply having a second pressure that is greater than the first pressure to provide a first buffer supply air having an intermediate pressure compared to the first pressure and the second pressure.
Abstract:
A system for starting a gas turbine engine of an aircraft is provided. The system includes a pneumatic starter motor, a discrete starter valve switchable between an on-state and an off-state, and a controller operable to perform a starting sequence for the gas turbine engine. The starting sequence includes alternating on and off commands to an electromechanical device coupled to the discrete starter valve to achieve a partially open position of the discrete starter valve to control a flow from a starter air supply to the pneumatic starter motor to drive rotation of a starting spool of the gas turbine engine below an engine idle speed.
Abstract:
An oil supply system for a gas turbine engine has a lubricant pump delivering lubricant to an outlet line. The outlet line is split into at least a hot line and into a cool line, with the hot line directed primarily to locations associated with an engine that are not intended to receive cooler lubricant, and the cool line directed through one or more heat exchangers at which lubricant is cooled. The cool line then is routed to a fan drive gear system of an associated gas turbine engine. A method and apparatus are disclosed. The heat exchangers include at least an air/oil cooler wherein air is pulled across the air/oil cooler to cool oil. The air/oil cooler is provided with an ejector tapping compressed air from a compressor section to increase airflow across the air/oil cooler.
Abstract:
A gas turbine engine includes a very high speed low-pressure turbine such that a quantity defined by the exit area of the low pressure turbine multiplied by the square of the low pressure turbine rotational speed compared to the same parameters for a higher pressure turbine is at a ratio between about 0.5 and about 1.5. In addition, the lower pressure turbine is mounted with a first bearing mounted in a mid-turbine frame, and a second bearing mounted within a turbine exhaust case.