Abstract:
A fuel nozzle for a combustor of a gas turbine engine includes an outer air swirler along an axis, said outer air swirler defines an outer annular air passage between an outer wall and an inner wall, the outer wall defines a convergent-divergent nozzle. An inner air swirler along the axis to define an annular liquid passage therebetween, the annular liquid passage terminates upstream of the convergent-divergent nozzle and an annular fuel gas passage around the axis between the outer air swirler and the inner air swirler.
Abstract:
A method of controlling an aircraft bleed may include the steps of monitoring a temperature of a precooled airflow exiting a precooler, and determining a status of a wing anti-ice system of an aircraft. The wing anti-ice system may be configured to receive the precooled airflow from the precooler. The method may further comprise the steps of determining whether an engine operating condition of the aircraft is within an icing envelope, selecting a temperature set point for the precooled airflow based on the status of the wing anti-ice system and whether the aircraft is within an icing envelope, and modulating a fan airflow from a fan to the precooler to adjust the temperature of the precooled airflow to the temperature set point.
Abstract:
A combustor is provided. The combustor may comprise an axial fuel delivery system, and a radial fuel delivery system aft of the axial fuel delivery system. The radial fuel delivery system may be configured to direct fuel at least partially towards the axial fuel delivery system. A radial fuel delivery system is also provided. The system may comprise a combustor including a combustor liner, a mixer coupled to the combustor liner, and a nozzle disposed within the mixer, wherein the mixer and the nozzle are configured to direct fuel in a direction at least partially forward.
Abstract:
In various embodiments, a dual fuel nozzle (200) for use in a gas 200 turbine engine is provided. The nozzle may be configured to supply and gas and a liquid. The dual fuel nozzle (200) may include an interior wall (217). The interior wall (217) may include a shoulder (219). The shoulder (219) may include one or more gas ports (216). Gas may be discharged through the gas ports (216) and penetrate a mixing zone.