Abstract:
A driving circuit is provided. The driving circuit is configured to generate an output signal according to an input signal generated from an input-stage voltage with a first voltage level and a reference voltage with a second voltage level. The driving circuit has a differential amplifier and an output stage. The differential amplifier has a first input terminal coupled to the reference voltage, a second input terminal coupled to the output signal, and an output terminal. The differential amplifier is supplied by an operation voltage with a third voltage level. The output stage is configured to receive the input signal and the operation voltage to generate the output signal. The second input terminal is coupled to the output terminal of the differential amplifier according to the input signal. The operation voltage is generated according to the input signal and the input-stage voltage.
Abstract:
Some embodiments of the system comprise a current mirror with two switches (a first switch and a second switch) and two compensation circuits (a first compensation circuit and a second compensation circuit). In one embodiment, the first compensation circuit adjusts a drain voltage of the second switch based on a drain voltage of the first switch, and the second compensation circuit adjusts a current through the first switch based on the drain voltage of the second switch.
Abstract:
A differential signaling driver includes a current source, a differential signal generator, and a resistor. The current source is connected between an operation voltage and a first node, and supplies a driving current to the first node. The differential signal generator is connected between the first node and a second node. The differential signal generator receives a digital input signal, and generates a pair of differential output signals at a first output node and a second output node according to the digital input signal. The resistor is connected between the second node and a ground voltage. The differential signal generator couples the first output node to the operation voltage and the second output node to the ground voltage or couples the first output node to the ground voltage and the second output node to the operation voltage according to the digital input signal.
Abstract:
An input buffer is provided. The input buffer receives an input signal through an input terminal and outputs an output signal at an output terminal. The input circuit includes an input circuit and a level shifting circuit. The input circuit receives the input signal and generates a buffer signal according to the input signal. The level shifting circuit receives a first supply voltage and the buffer signal and generates the output signal at the output terminal according to the buffer signal and the first supply voltage. The first high level of the input signal is higher than a voltage level of the first supply voltage. When the input signal is at a first high level, the input circuit generates the buffer signal whose voltage level is between the first high level of the input signal and the voltage level of the first supply voltage.
Abstract:
A duty adjustment circuit is provided. The duty adjustment circuit is used to adjust a duty cycle of a first driving signal. The duty adjustment circuit includes a filter, a first comparator, and a first duty adjustor. The filter receives a comparison result signal and filters the comparison result signal to generate a duty information signal. The duty information signal indicates a duty cycle of the comparison result signal. The first comparator receives the duty information signal and determines whether a direct-current (DC) level of the duty information signal falls into a predefined voltage range to generate a first adjustment signal. The first duty adjustor receives the first adjustment signal and the first driving signal and adjusts the duty cycle of the first driving signal according to the first adjustment signal.