Abstract:
A subject can be tracking using a plurality of physical video monitoring or image acquisition devices deployed in a delimited area. A map represents the delimited area. Icons representing the physical monitoring devices can be placed and configured on the map representing the delimited area. Some or all of the placed and configured video monitoring devices can be logically linked together to form scenes. The video feed from the physical video monitoring devices may be recorded in stable storage. A layout for display of the video feeds may be selected. Upon playing the video feed, whether live or recorded, a subject can be tracked through the delimited area by selecting one of the video monitoring devices in one of the available scenes.
Abstract:
A subject can be tracking using a plurality of physical video monitoring or image acquisition devices deployed in a delimited area. A map represents the delimited area. Icons representing the physical monitoring devices can be placed and configured on the map representing the delimited area. Some or all of the placed and configured video monitoring devices can be logically linked together to form scenes. The video feed from the physical video monitoring devices may be recorded in stable storage. A layout for display of the video feeds may be selected. Upon playing the video feed, whether live or recorded, a subject can be tracked through the delimited area by selecting one of the video monitoring devices in one of the available scenes.
Abstract:
A subject can be tracking using a plurality of physical video monitoring or image acquisition devices deployed in a delimited area. A map represents the delimited area. Icons representing the physical monitoring devices can be placed and configured on the map representing the delimited area. Some or all of the placed and configured video monitoring devices can be logically linked together to form scenes. The video feed from the physical video monitoring devices may be recorded in stable storage. A layout for display of the video feeds may be selected. Upon playing the video feed, whether live or recorded, a subject can be tracked through the delimited area by selecting one of the video monitoring devices in one of the available scenes.
Abstract:
A subject can be tracking using a plurality of physical video monitoring or image acquisition devices deployed in a delimited area. A map represents the delimited area. Icons representing the physical monitoring devices can be placed and configured on the map representing the delimited area. Some or all of the placed and configured video monitoring devices can be logically linked together to form scenes. The video feed from the physical video monitoring devices may be recorded in stable storage. A layout for display of the video feeds may be selected. Upon playing the video feed, whether live or recorded, a subject can be tracked through the delimited area by selecting one of the video monitoring devices in one of the available scenes.
Abstract:
Embodiments disclosed herein provide systems and methods for matching trajectories across disjointed video views. In a particular embodiment, a method provides receiving a plurality of tagged trajectories that are tagged with an indicator of which trajectory pairs of the plurality of tagged trajectories are matching trajectory pairs and processing each of the trajectory pairs using each of a plurality of trajectory matching algorithms. The method further provides creating a model for matching trajectories based on the output of each of the plurality of trajectory matching algorithms for each of the pairs. The method further provides receiving a pair of trajectories and processing the pair of trajectories using each of the plurality of the trajectory matching algorithms. The method further provides processing the output of each of the plurality of the trajectory matching algorithms for the pair of trajectories using the model to determine whether the pair of trajectories is matching.
Abstract:
Embodiments disclosed herein provide systems and methods for matching trajectories across disjointed video views. In a particular embodiment, a method provides identifying a first trajectory associated with an object in video captured of a first region. The method further provides identifying a plurality of alternative views of the object from the video of the first region. The method further provides generating additional views for inclusion in the plurality of alternative views by copying and horizontally flipping at least one view of the plurality of alternative views. The method further provides using the plurality of alternative views of the object, selecting a second trajectory that corresponds to the first trajectory from a plurality of trajectories associated with a plurality of objects in video captured of a second region.