Abstract:
A method for controlling an induction heating system, particularly an induction heating system of a cooktop on which a cooking utensil with a certain contents is placed for heating/cooking purposes, comprises the steps of carrying out a predetermined number “n” of electrical measurements of a first electrical parameter of the heating system on the basis of a predetermined electrical value of a second electrical parameter, “n” being ≥2, repeating the above set of measurements at a predetermined time after the first measurements, and estimating at least one thermal parameter of the heating system, particularly of the contents of the cooking utensil, on the basis of the above set of measurements.
Abstract:
A method for operating an induction cooking hob including a plurality of inductors in association with induction resonant inverters operating in load-dependent frequency ranges includes a simultaneous activation of inductors, in at least one phase of the control period, independently from their association to one or more overlying cooking utensils but only according to at least partial overlapping of associated operating frequency ranges.
Abstract:
A power delivery system and method for an induction cooktop are provided herein. A plurality of inverters are each configured to apply an output power to a plurality of induction coils electrically coupled thereto via corresponding relays. A selected inverter is operable to momentarily idle to enable commutation of a relay connected thereto. An active inverter is operable to increase its output power for the duration in which the selected inverter is idled in order to lessen power fluctuations experienced on a mains line.
Abstract:
An induction heating device comprises a power supply configured to supply D.C. power and a plurality of resonant loads. Each of the resonant loads comprises a first node and a second node. The first nodes are in connection with the power supply. The device further comprises a plurality of first switching devices. One of the first switching devices is in connection with the second node of each one of the resonant loads. A second switching device is in connection with each of the first switching devices. A union of activation of one or more activated first switching devices and the second switching device supplies current from the power supply through the resonant loads in connection with the one or more activated first switching devices.
Abstract:
An induction cooking apparatus comprises a plurality of induction coils arranged in an array. The induction coils comprise conductive windings and at least one foil. The at least one foil comprises magnetically permeable material extending beneath the plurality of induction coils.
Abstract:
The present disclosure relates to an induction cooktop. The induction cooktop comprises a ceramic cooking surface in connection with a housing. A plurality of inductors is disposed in the housing and each of the inductors is in communication with an automatic control system. The automatic control system is configured to check for the presence of a cooking pan on the cooktop in order to prevent the inductors from activating in the absence of the cooking pan. The automatic control system is activated upon receiving an activation command.
Abstract:
A refrigeration appliance comprises a cavity in which an ozone generating device is placed. The ozone generating device is configured to maintain in the cavity a concentration of ozone between 0.04 and 0.12 ppm, more preferably between 0.06 and 0.1 ppm.
Abstract:
Operations such as adding food or flipping or otherwise manipulating food in an item of cookware being heated may be detected by comparing with a threshold the time derivative of a sensed temperature and/or of heating power absorbed by an item of cookware, wherein the heating power is provided by an induction cooktop operated in order to keep constant the temperature value sensed by the sensors coupled to the item of cookware.
Abstract:
A method for controlling a heating operation of an induction cooktop includes generating a direct current (DC) power from an alternating current (AC) power source. The DC power is supplied to a first resonant inverter and a second resonant inverter via a power supply bus. A switching frequency of each of the first resonant inverter and the second resonant inverter is controlled and in response to the switching frequency supplied to a plurality of induction coils of the resonant inverters, an electromagnetic field is generated. A selective tuning operation of the first resonant inverter or the second resonant inverter includes controlling a connection of a capacitor to either the first resonant inverter or the second resonant inverter.
Abstract:
The present disclosure relates to an induction cooktop. The induction cooktop comprises a ceramic cooking surface in connection with a housing. A plurality of inductors is disposed in the housing and each of the inductors is in communication with an automatic control system. The automatic control system is configured to check for the presence of a cooking pan on the cooktop in order to prevent the inductors from activating in the absence of the cooking pan. The automatic control system is activated upon receiving an activation command.