Object pose neural network system
    11.
    发明授权

    公开(公告)号:US11625852B1

    公开(公告)日:2023-04-11

    申请号:US17114083

    申请日:2020-12-07

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium for predicting object pose. In one aspect, a method includes receiving an image of an object having one or more feature points; providing the image as an input to a neural network subsystem trained to receive images of objects and to generate an output including a heat map for each feature point; applying a differentiable transformation on each heat map to generate respective one or more feature coordinates for each feature point; providing the feature coordinates for each feature point as input to an object pose solver configured to compute a predicted object pose for the object, wherein the predicted object pose for the object specifies a position and an orientation of an object; and receiving, at the output of the object pose solver, a predicted object pose for the object in the image.

    Robotic control using value distributions

    公开(公告)号:US11571809B1

    公开(公告)日:2023-02-07

    申请号:US17017920

    申请日:2020-09-11

    Abstract: Techniques are described herein for robotic control using value distributions. In various implementations, as part of performing a robotic task, state data associated with the robot in an environment may be generated based at least in part on vision data captured by a vision component of the robot. A plurality of candidate actions may be sampled, e.g., from continuous action space. A trained critic neural network model that represents a learned value function may be used to process a plurality of state-action pairs to generate a corresponding plurality of value distributions. Each state-action pair may include the state data and one of the plurality of sampled candidate actions. The state-action pair corresponding to the value distribution that satisfies one or more criteria may be selected from the plurality of state-action pairs. The robot may then be controlled to implement the sampled candidate action of the selected state-action pair.

    Machine learning methods and apparatus for robotic manipulation and that utilize multi-task domain adaptation

    公开(公告)号:US10773382B2

    公开(公告)日:2020-09-15

    申请号:US15913212

    申请日:2018-03-06

    Abstract: Implementations are directed to training a machine learning model that, once trained, is used in performance of robotic grasping and/or other manipulation task(s) by a robot. The model can be trained using simulated training examples that are based on simulated data that is based on simulated robot(s) attempting simulated manipulations of various simulated objects. At least portions of the model can also be trained based on real training examples that are based on data from real-world physical robots attempting manipulations of various objects. The simulated training examples can be utilized to train the model to predict an output that can be utilized in a particular task—and the real training examples used to adapt at least a portion of the model to the real-world domain can be tailored to a distinct task. In some implementations, domain-adversarial similarity losses are determined during training, and utilized to regularize at least portion(s) of the model.

    Neural network modules
    15.
    发明授权

    公开(公告)号:US10748057B1

    公开(公告)日:2020-08-18

    申请号:US15272112

    申请日:2016-09-21

    Abstract: Methods, apparatus, and computer readable media related to combining and/or training one or more neural network modules based on version identifier(s) assigned to the neural network module(s). Some implementations are directed to using version identifiers of neural network modules in determining whether and/or how to combine multiple neural network modules to generate a combined neural network model for use by a robot and/or other apparatus. Some implementations are additionally or alternatively directed to assigning a version identifier to an endpoint of a neural network module based on one or more other neural network modules to which the neural network module is joined during training of the neural network module.

    Machine learning methods and apparatus for automated robotic placement of secured object in appropriate location

    公开(公告)号:US11607807B2

    公开(公告)日:2023-03-21

    申请号:US17230628

    申请日:2021-04-14

    Abstract: Training and/or use of a machine learning model for placement of an object secured by an end effector of a robot. A trained machine learning model can be used to process: (1) a current image, captured by a vision component of a robot, that captures an end effector securing an object; (2) a candidate end effector action that defines a candidate motion of the end effector; and (3) a target placement input that indicates a target placement location for the object. Based on the processing, a prediction can be generated that indicates likelihood of successful placement of the object in the target placement location with application of the motion defined by the candidate end effector action. At many iterations, the candidate end effector action with the highest probability is selected and control commands provided to cause the end effector to move in conformance with the corresponding end effector action. When at least one release criteria is satisfied, control commands can be provided to cause the end effector to release the object, thereby leading to the object being placed in the target placement location.

    Machine learning methods and apparatus for automated robotic placement of secured object in appropriate location

    公开(公告)号:US11007642B2

    公开(公告)日:2021-05-18

    申请号:US16167596

    申请日:2018-10-23

    Abstract: Training and/or use of a machine learning model for placement of an object secured by an end effector of a robot. A trained machine learning model can be used to process: (1) a current image, captured by a vision component of a robot, that captures an end effector securing an object; (2) a candidate end effector action that defines a candidate motion of the end effector; and (3) a target placement input that indicates a target placement location for the object. Based on the processing, a prediction can be generated that indicates likelihood of successful placement of the object in the target placement location with application of the motion defined by the candidate end effector action. At many iterations, the candidate end effector action with the highest probability is selected and control commands provided to cause the end effector to move in conformance with the corresponding end effector action. When at least one release criteria is satisfied, control commands can be provided to cause the end effector to release the object, thereby leading to the object being placed in the target placement location.

    Control policies for robotic agents

    公开(公告)号:US10960539B1

    公开(公告)日:2021-03-30

    申请号:US15705655

    申请日:2017-09-15

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, of training a global policy neural network. One of the methods includes initializing a plurality of instances of the robotic task. For each instance of the robotic task, the method includes generating a trajectory of state-action pairs by selecting actions to be performed by the robotic agent while performing the instance of the robotic task in accordance with current values of the parameters of the global policy neural network, and optimizing a local policy controller that is specific to the instance on the trajectory of state-action pairs for the instance. The method further includes generating training data for the global policy neural network using the local policy controllers, and training the global policy neural network on the training data to adjust the current values of the parameters of the global policy neural network.

    MACHINE LEARNING METHODS AND APPARATUS FOR ROBOTIC MANIPULATION AND THAT UTILIZE MULTI-TASK DOMAIN ADAPTATION

    公开(公告)号:US20190084151A1

    公开(公告)日:2019-03-21

    申请号:US15913212

    申请日:2018-03-06

    Abstract: Implementations are directed to training a machine learning model that, once trained, is used in performance of robotic grasping and/or other manipulation task(s) by a robot. The model can be trained using simulated training examples that are based on simulated data that is based on simulated robot(s) attempting simulated manipulations of various simulated objects. At least portions of the model can also be trained based on real training examples that are based on data from real-world physical robots attempting manipulations of various objects. The simulated training examples can be utilized to train the model to predict an output that can be utilized in a particular task—and the real training examples used to adapt at least a portion of the model to the real-world domain can be tailored to a distinct task. In some implementations, domain-adversarial similarity losses are determined during training, and utilized to regularize at least portion(s) of the model.

Patent Agency Ranking