Abstract:
A lamp apparatus include a lamp body, at least an alternating current light-emitting diode and a plug. The alternating current light-emitting diode is disposed on a lamp body. The plug is electrically connected to the alternating current light-emitting diode. In lamp apparatuses utilizing AC LED, heat generated thereby is almost concentrated on chips. Compared with conventional lamp apparatuses utilizing DC LEDs, heat generated thereby is distributed on chips and outer rectifier. In lamp apparatuses utilizing AC LEDs, heat generated thereby is almost concentrated on chips because AC LEDs operate directly with AC electric power, omitting a rectifier and preventing power loss during operation of power rectification. Therefore, the heat accumulated on the chips of the AC LEDs is enough to be used to evaporate essential oil. In another embodiment, the invention utilizes low-resistance pure water surrounding the AC LED to dissipate its heat.
Abstract:
A method for controlling layer changes for an optical disk drive is provided, where a focus of a laserbeam emitted by a pickup head of the optical disk drive is moved from a current data layer of a disk to a target data layer of the disk. First, a position of a collimator lens of the pickup head is adjusted for spherical aberration correction. The objective lens is then lowered to a low position to move the focus of the laserbeam off the surface of the disk. The objective lens is then raised towards the disk. A focusing error signal is generated while the objective lens is being raised. Whether a target S-curve corresponding to the target data layer is present in the focusing error signal is then started to be detected. If the target S-curve is detected, the focus on operation on the target data layer of the disk is successful.
Abstract:
A light-emitting diode (LED) lamp and a polygonal heat-dissipation structure thereof are provided. The LED lamp includes a polygonal heat-dissipation unit and a lighting module. The polygonal heat-dissipation unit has a polygonal hollow column and fins. The fins and the lighting module are thermally disposed on an inner surface and an outer surface of the polygonal hollow column, respectively. Thus, heat generated by the lighting module is dissipated by the fins rapidly. As the fins are thermally disposed on the inner surface of the polygon hollow column instead of being exposed, the volume of the LED lamp can be minimized, and the look of the LED lamp also can be prettified.
Abstract:
Calibration methods are provided for determining servo parameters to enhance an optical drive in reading and writing a blank optical disc. First, test data is written on the blank disc with various writing parameters. Second, the written test data is read from the optical disc with various reading parameters. A plurality of quality measures are obtained, each corresponds to a specific combination of the writing parameter and the reading parameter. An optimal writing parameter and an optimal reading parameter are determined by comparing the quality measures with respect to both the reading and writing parameters respectively.
Abstract:
The invention provides an optical disk drive. In one embodiment, the optical disk drive comprises a feeding device, a power driver, and a controller. The feeding device comprises a spherical aberration (SA) lens and a stepping motor, wherein the SA lens corrects spherical aberration of a light beam emitted by a pickup head, and the stepping motor moves the SA lens according to a plurality of control signals. The power driver generates the control signals to drive the stepping motor to move the SA lens. The controller directs the power driver to drive the stepping motor to move the SA lens with only stable steps when the SA lens is required to move, so that the stepping motor is in a stable state without inducing step errors after the stepping motor rotates with the stable steps.
Abstract:
A socket device with an indication portion comprises a colored sleeve; the sleeve being made by high molecular organic plastics; a socket; the sleeve being rotatable installed on the socket; an indication portion on a surface of the sleeve for indicating a value about the size of the socket. The socket has an annular recess for receiving the sleeve. The sleeve may be an annular ring; or the sleeve is a C ring; or the sleeve has a protrusion and the protrusion is received in the annular recess.
Abstract:
A sleeve with an indication assembly comprises a sleeve; and a toggle having an inner diameter corresponding to an outer diameter of the sleeve; and the toggle being made of aluminum alloy; a surfaces of the toggle being anodic processed so as to form with a protection film of different colors; thus the surfaces of the toggle is prevented from cracking, collision, mist and falling off. Furthermore, in another case, the toggle has an inner diameter corresponding to an outer diameter of the sleeve; and the toggle is made of iron. A surface of the toggle is electroplated so as to form with a copper layer and then is performed with anodic processing so as to have the effect of indication of sizes.
Abstract:
The invention provides an optical disk drive. In one embodiment, the optical disk drive comprises a feeding device, a power driver, and a controller. The feeding device comprises a spherical aberration (SA) lens and a stepping motor, wherein the SA lens corrects spherical aberration of a light beam emitted by a pickup head, and the stepping motor moves the SA lens according to a plurality of control signals. The power driver generates the control signals to drive the stepping motor to move the SA lens. The controller directs the power driver to drive the stepping motor to move the SA lens with only stable steps when the SA lens is required to move, so that the stepping motor is in a stable state without inducing step errors after the stepping motor rotates with the stable steps.
Abstract:
A codebook generating method comprises a dividing and transforming step dividing an original image into original blocks and transforming the original blocks into original vectors; a dividing step grouping the original vectors to obtain centroids; a first layer neuron training step selecting a portion of the centroids as first-level neurons; a grouping step assigning each of the original vectors to a closest first-level neuron so as to obtain groups; a second layer neuron assigning step assigning a number of second-level neurons in each of the groups, and selecting a portion of the original vectors in each of the groups as the second-level neurons; and a second layer neuron training step defining the original vectors in each of the groups as samples, training the second-level neurons in each of the groups to obtain final neurons, and storing vectors corresponding to the final neurons in a codebook.
Abstract:
A method for controlling focus loop of an optical storage device includes: moving a lens of an optical pick-up head in a first moving direction; performing a focusing operation when a first S-curve sequence appears in a focus error signal; and when a light beam generated from the optical pick-up head is not focused on an optical disc, performing the focusing operation when a second S-curve sequence appears in the focus error signal; wherein the first S-curve sequence and the second S-curve sequence appear in the focus error signal during one revolution of the optical disc.