Abstract:
Rotational atherectomy devices and systems can remove or reduce stenotic lesions in blood vessels by rotating one or more abrasive elements within the vessel. The abrasive elements can be attached to a distal portion of an elongate flexible drive shaft that extends from a handle assembly that includes a driver for rotating the drive shaft. In particular implementations, individual abrasive elements are attached to the drive shaft at differing radial angles in comparison to each other (e.g., configured in a helical array). The centers of mass of the abrasive elements can define a path that fully or partially spirals around the drive shaft. In some embodiments, a distal stability element with a center of mass aligned with the longitudinal axis is fixedly mounted to the drive shaft.
Abstract:
Rotational atherectomy devices and systems can remove or reduce stenotic lesions in blood vessels by rotating one or more abrasive elements within the vessel. The abrasive elements are attached to a distal portion of an elongate flexible drive shaft that extends from a handle assembly that includes a driver for rotating the drive shaft. In particular implementations, individual abrasive elements are attached to the drive shaft at differing radial angles in comparison to each other (e.g., configured in a helical array). The centers of mass of the abrasive elements can define a path that spirals around the drive shaft in a direction that is opposite to the wind direction of filars of the drive shaft, and opposite to the direction of rotation. In some embodiments, a concentric abrasive tip member is affixed to and extends distally from a distal-most end of the drive shaft.
Abstract:
A rotational atherectomy device for removing a stenotic tissue from the iliac artery of a patient. The device comprises a flexible, rotatable drive shaft having an elongated proximal portion, an elongated distal portion, and an abrasive element mounted to the drive shaft between the elongated proximal and distal portions of the drive shaft and configured for rapid rotation together with the drive shaft.
Abstract:
A rotational atherectomy device for removing a stenotic tissue from the iliac artery of a patient. The device comprises a flexible, rotatable drive shaft having an elongated proximal portion, an elongated distal portion, and an abrasive element mounted to the drive shaft between the elongated proximal and distal portions of the drive shaft and configured for rapid rotation together with the drive shaft. The drive shaft is configured to extend throughout an entire length of the iliac artery to be treated and one elongated portion of the drive shaft extends out of the patient through a first access opening located in a femoral artery which is ipsilateral to the treated artery. Another elongated portion of the drive shaft extends through a second access opening located in another peripheral artery of the patient.
Abstract:
A rotational atherectomy device for removing a stenotic tissue from the iliac artery of a patient. The device comprises a flexible, rotatable drive shaft having an elongated proximal portion, an elongated distal portion. An abrasive element is mounted to the drive shaft between the elongated proximal and distal portions of the drive shad and between and spaced away from a pair of counterweights which are mounted to said elongated portions of the drive shaft. The eccentric abrasive element and the counterweights are configured for rapid rotation together with the drive shaft, the drive shaft is configured to extend throughout an entire length of the iliac artery to be treated. One elongated portion of the drive shaft extends out of the patient through a first access opening located in a femoral artery which is ipsilateral to the treated artery. Another elongated portion of the drive shaft extending through a second access opening located in another peripheral artery of the patient. A method of treating are iliac artery of a patient using such a rotational atherectomy device.
Abstract:
A rotational atherectomy device for removing a stenotic tissue from a vessel of a patient is disclosed. The device comprises a rotatable, flexible, hollow drive shaft having a fluid impermeable wall defining a lumen of the drive shaft and, an abrasive element mounted to a distal end portion of the drive shaft proximal to and spaced away from a distal support element formed at a distal end of the drive shaft. The distal support element is inflatable by pressurized fluid which flows in an antegrade direction through said lumen of the drive shaft and is least partially re-directed into the distal fluid inflatable support element. The distal fluid inflatable support element has an outer wall comprising an outflow opening.
Abstract:
A rotational device for removing a stenotic lesion from within a vessel of a patient is disclosed. The device comprises a flexible hollow drive shaft having a distal end insertable into the vessel and an abrasive element located on the drive shaft proximal to the distal end of the drive shaft to abrade a stenotic lesion when the drive shaft rotates. The hollow drive shaft defines a lumen for fluid supplied into the drive shaft to flow in an antegrade direction along the lumen and into the vessel from the drive shaft distal to the abrasive element so that the fluid entering the vessel flows in a retrograde direction over the abrasive element and the drive shaft to entrain debris abraded by the abrasive element for removal of said debris from the patient.
Abstract:
Some embodiments of a rotational atherectomy device can remove (partially or completely) stenotic lesions in blood vessels by rotating one or more abrasive elements in an orbital path to abrade and breakdown the lesion. In particular implementations, multiple abrasive elements are arranged along a distal portion of a drive shaft with an improved configuration so as to facilitate both efficient navigation into smaller blood vessels below the ankle or in the heart and effective orbital paths for abrading stenotic material in such smaller vessels.
Abstract:
Some embodiments of a rotational atherectomy device can remove (partially or completely) stenotic lesions in blood vessels by rotating one or more abrasive elements in an orbital path to abrade and breakdown the lesion. In particular implementations, multiple abrasive elements are arranged along a distal portion of a drive shaft with an improved configuration so as to facilitate both efficient navigation into smaller blood vessels below the ankle or in the heart and effective orbital paths for abrading stenotic material in such smaller vessels.
Abstract:
Rotational atherectomy devices and systems can remove or reduce stenotic lesions in implanted grafts by rotating one or more abrasive elements within the graft. The abrasive elements can be attached to a distal portion of an elongate flexible drive shaft that extends from a handle assembly that includes a driver for rotating the drive shaft. In particular implementations, individual abrasive elements are attached to the drive shaft at differing radial angles in comparison to each other (e.g., configured in a helical array). The centers of mass of the abrasive elements can define a path that fully or partially spirals around the drive shaft.