-
公开(公告)号:US20210223169A1
公开(公告)日:2021-07-22
申请号:US17227008
申请日:2021-04-09
Applicant: MultiSensor Scientific, Inc.
Inventor: Allen M. Waxman , Stefan Bokaemper , Terrence K. Jones , Claude V. Robotham
IPC: G01N21/359 , G01N21/3504
Abstract: Presented herein are systems and methods directed to a multispectral absorption-based imaging approach that provides for rapid and accurate detection, localization, and quantification of gas emission from within a site to be monitored. The imaging technology described herein utilizes an optical sensor and broadband illumination in combination with specialized reflector installments mounted about the site. The optical sensor detects light (e.g., reflected) from a plurality of sampled locations along the reflector installment, for example by imaging multiple sampled locations at a time and/or scanning an instantaneous field of view (ifov) of the optical sensor. Lines-of-sight from the optical sensor to sampled locations along the reflector installment sweep out an “optical curtain” partially enclosing and/or forming a boundary near various assets to be monitored. Optical absorption signatures from leaking gas crossing the optical curtain can be used to detect, localize, and obtain quantitative measures characterizing the leak.
-
公开(公告)号:US10436710B2
公开(公告)日:2019-10-08
申请号:US16183045
申请日:2018-11-07
Applicant: MultiSensor Scientific, Inc.
Inventor: Allen M. Waxman , Jason M. Bylsma , Allan Vaitses
IPC: G01N21/3518 , G01M3/38 , G01F1/76 , G01J3/06 , G01J3/42 , G01J3/44 , G01J5/00 , G01N21/3504 , G01N21/31
Abstract: Apparatus and methods for rapidly detecting, localizing, imaging, and quantifying leaks of natural gas and other hydrocarbon and greenhouse gases. Scanning sensors, scan patterns, and data processing algorithms enable monitoring a site to rapidly detect, localize, image, and quantify amounts and rates of hydrocarbon leaks. Multispectral short-wave infrared detectors sense non-thermal infrared radiation from natural solar or artificial illumination sources by differential absorption spectroscopy. A multispectral sensor is scanned to envelop an area of interest, detect the presence and location of a leak, and raster scan the area around the leak to create an image of the leak. The resulting absorption image related to differential spectral optical depth is color mapped to render the degree of gas absorption across the scene. Analysis of this optical depth image, with factors including known inline pressures and/or surface wind speed measurements, enable estimation of the leak rate, i.e., emission mass flux of gas.
-
公开(公告)号:US10371627B2
公开(公告)日:2019-08-06
申请号:US16129731
申请日:2018-09-12
Applicant: MultiSensor Scientific, Inc.
Inventor: Allen M. Waxman , Terrence K. Jones , Jason M. Bylsma , Stefan Bokaemper
IPC: G01N21/3504 , G01N33/22 , G01N21/359
Abstract: Presented herein are systems and methods directed to a multispectral absorption-based imaging approach that provides for rapid and accurate detection, localization, and quantification of gas leaks. The imaging technology described herein utilizes a scanning optical sensor in combination with structured and scannable illumination to detect and image spectral signatures produced by absorption of light by leaking gas in a quantitative manner over wide areas, at distance, and in the presence of background such as ambient gas and vapor. Moreover, the specifically structured and scannable illumination source of the systems and methods described herein provides a consistent source of illumination for the scanning optical sensor, allowing imaging to be performed even in the absence of sufficient natural light, such as sunlight. The imaging approaches described herein can, accordingly, be used for a variety of gas leak detection, emissions monitoring, and safety applications.
-
-