Abstract:
A packaging device for grouping product items, especially semi-soft tissue paper packs (7), to a bundle of layered rows (L1, L2, L3) of said product items (7) having a supply line (1) including a main conveyor belt (5) constituently carrying and supplying a stream of product items (7) in a defined orientation along an infeed main path (6) to a transfer position (18), an elevator means (2) having a plurality of stack-forming receptacles (23) each receiving a grouped row (L1, L2, L3) of a specified number of said product items (7) in a chopped manner from the transfer position of said supply line (1) at an input end of the elevator means (2), wherein the elevator means (2) is adapted to successively displace the stacked grouped rows of product items (7) in a side-by-side relationship orthogonally to the infeed main path (6) to an output end of the elevator means (2), and an outfeed unit (3) engaging with the elevator means (2), commonly removing a specified number stacked grouped rows (L1, L2, L3) of said product items (7) in the side-by-side relationship from the output end of the elevator means (2) to form said bundle of product items (7).
Abstract:
The present invention relates to a moving head light fixture comprising: a base; a yoke connected to and rotatable relative to the base; a head connected to and rotatable relative to the yoke where the head comprises at least one light source generating a light. The yoke and the base are connected through a rotating base-yoke mechanism comprising a main shaft, a hollow shaft surrounding the main shaft and at least one bearing separating the main shaft and a the hollow shaft. The main shaft has increasing cross sectional dimensions and comprises a first annular flange located a distance from the part of the main shaft having the largest cross sectional dimension and in that the cross sectional dimension of the first annular flange is smaller than the largest cross sectional dimension of the main shaft.
Abstract:
The present invention relates to lens assembly for an illumination device comprising a number of optical lenses and a lens holder comprising a mounting plate having a number of holes, said number of holes being adapted to accommodate said lenses. At least one of said holes is at least partially surrounded by a number of resilient fingers extending backward from the mounting plate, said resilient fingers being adapted to engage with one of said lenses and secure said lens in said holes. The present invention relates also to an illumination device comprising such lens assembly and a method of manufacturing the illumination device.
Abstract:
The present invention discloses an illumination device comprising a base, a yoke connected to and rotatable relative to the base and a head connected to and rotatable relative to the yoke. The head comprises at least one light source generating light and the yoke comprises at least one yoke shell part and at least one motor connected to a bearing through a belt. The yoke shell part comprises belt tensioning means adapted to tighten the belt upon mounting of said yoke shell part. The present invention discloses further a method of manufacturing such illumination device. The method comprises the steps of arranging at least one motor on the yoke, arranging at least one bearing on the yoke, connecting the motor and the bearing by arranging a belt there between and arranging a yoke shell part on the and tightening the belt using said belt tensioning means.
Abstract:
The present invention discloses an illumination device comprising a base, a yoke connected to and rotatable relative to the base and a head connected to and rotatable relative to the yoke. The head comprises at least one light source generating light a light beam and wherein the light sources are arranged in a bucket shaped outer shell. The present invention relates also to a method of manufacturing such moving head light fixture. Further the present invention relates to a moving head light fixture where the head comprises a number of light sources generating a light beam; means for receiving user input from a user; and means for providing visual feedback to the user.
Abstract:
A light effect system includes a light source and one or more aperture elements interposed between the light source and an exit lens of the system. The aperture element comprises at least one aperture and at least one light effect element positioned therein. This invention concerns a system where the aperture element comprises at least two “fingers” partly surrounding each light effect element in at least 180° of the circumference. These snapping “fingers” engage with the contour of the outer surface of the said light effect element in order to hold the light effect element in position in the aperture, and the said fingers are formed of a flexible material. Hereby, it is achieved that the locking and releasing of the light effect component can be done by push and pull in an ideal perpendicular direction to the light path. In other words, no angling, bending or twisting is necessary, so a minimum of space is required.
Abstract:
An adaptor (8) for an axle where the axle defines the centre of rotation for transmission of the rotational movement to at least one access or attachment point (6), which is eccentric with the axis of rotation, where the adaptor (8) is disc-shape with an outer perimeter (7) and an inner perimeter (9), where the inner perimeter (9) has a shape which fits the axle, and furthermore where the adaptor (8) includes securing means for securing the adaptor (8) to the axle. This adaptor (8) is distinctive by a cut-out (10) connects the inner perimeter (9) with the outer perimeter (7), and the securing means consist of a shank portion (15) and a tread portion (14) where the shank portion (15) is larger than the tread portion (14). Hereby reducing the permanent deformation of the adaptor (8) as well as the axle as the shank portion (15) will provide most of the elasticity for the clamping force rendering it possible to transmit torque as well as reduce angle deformation.