Abstract:
Systems and methods are provided for real-time classification of streaming data. In particular, systems and methods for real-time classification of continuous data streams implement micro-clustering methods for offline and online processing of training data to build and dynamically update training models that are used for classification, as well as incrementally clustering the data over contiguous segments of a continuous data stream (in real-time) into a plurality of micro-clusters from which target profiles are constructed which define/model the behavior of the data in individual segments of the data stream.
Abstract:
A technique for classifying data from a test data stream is provided. A stream of training data having class labels is received. One or more class-specific clusters of the training data are determined and stored. At least one test instance of the test data stream is classified using the one or more class-specific clusters.
Abstract:
Uncertain data is classified by constructing an error adjusted probability density estimate for the data, and applying a subspace exploration process to the probability density estimate to classify the data.
Abstract:
Uncertain data is classified by constructing an error adjusted probability density estimate for the data, and applying a subspace exploration process to the probability density estimate to classify the data.
Abstract:
Improved techniques for privacy preserving data mining of multidimensional data records are disclosed. For example, a technique for generating at least one output data set from at least one input data set for use in association with a data mining process comprises the following steps/operations. At least one relevant attribute of the at least one input data set is selected through determination of at least one relevance coefficient. The at least one output data set is generated from the at least one input data set, wherein the at least one output data set comprises the at least one relevant attribute of the at least one input data set, as determined by use of the at least one relevance coefficient.
Abstract:
The present invention is directed to the use of an evolutionary algorithm to locate optimal solution subspaces. The evolutionary algorithm uses a point-based coding of the subspace determination problem and searches selectively over the space of possible coded solutions. Each feasible solution to the problem, or individual in the population of feasible solutions, is coded as a string, which facilitates use of the evolutionary algorithm to determine the optimal solution to the fitness function. The fitness of each string is determined by solving the objective function for that string. The resulting fitness value can then be converted to a rank, and all of the members of the population of solutions can be evaluated using selection, crossover, and mutation processes that are applied sequentially and iteratively to the individuals in the population of solutions. The population of solutions is updated as the individuals in the population evolve and converge, that is become increasingly genetically similar to one another. The iterations of selection, crossover and mutation are performed until a desired level of convergence among the individuals in the population of solutions has been achieved.
Abstract:
Interoperability is enabled between participants in a network by determining values associated with a value metric defined for at least a portion of the network. Information flow is directed between two or more of the participants based at least in part on semantic models corresponding to the participants and on the values associated with the value metric. The semantic models may define interactions between the participants and define at least a portion of information produced or consumed by the participants. The determination of the values and the direction of the information flow may be performed multiple times in order to modify the one or more value metrics. The direction of information flow may allow participants to be deleted from the network, may allow participants to be added to the network, or may allow behavior of the participants to be modified.
Abstract:
Methods and apparatus for generating at least one output data set from at least one input data set for use in association with a data mining process are provided. First, data statistics are constructed from the at least one input data set. Then, an output data set is generated from the data statistics. The output data set differs from the input data set but maintains one or more correlations from within the input data set. The correlations may be the inherent correlations between different dimensions of a multidimensional input data set. A significant amount of information from the input data set may be hidden so that the privacy level of the data mining process may be increased.
Abstract:
A method for classifying objects in a graph data stream, including receiving a training stream of graph data, the training stream including a plurality of objects along with class labels that are associated with each of the objects, first determining discriminating sets of edges in the training stream for the class labels, wherein a discriminating set of edges is one that is indicative of the object that contains these edges having a given class label, receiving an incoming data stream of the graph data, wherein class labels have not yet been assigned to objects in the incoming data stream, second determining, based on the discriminating sets of edges, class labels that are associated with the objects in the incoming data stream; and outputting to an information repository object class label pairs based on the second determining.
Abstract:
In a method for representing a text document with a graphical model, a document including a plurality of ordered words is received and a graph data structure for the document is created. The graph data structure includes a plurality of nodes and edges, with each node representing a distinct word in the document and each edge identifying a number of times two nodes occur within a predetermined distance from each other. The graph data structure is stored in an information repository.