Abstract:
A face or face insert (40) for a golf club head (20) is disclosed herein. The face (40) has an interior surface (40b) with a first thickness section (200) and a second thickness region (205). The first thickness section (200) preferably has a thickness that is at least 0.025 inch greater than the thickness of the second thickness region (205). In a most preferred embodiment, the first thickness section (200) has an X shape that is rotated around the Y axis (500) by at least 10 degrees. In another preferred embodiment, the face has a first thickness section (200), a second thickness region (205), and a central region (400) having a third thickness. The face or face insert (40) with variable thickness allows for a face or face insert (40) with less mass in a golf club head (20) that conforms to the United States Golf Association regulations.
Abstract:
Methods of forming a golf club head having improved aerodynamic characteristics are disclosed herein. A preferred method is the largest tangent circle method, which utilizes a Cartesian coordinate system. The method results in identification and measurement of certain club head features, which can be adjusted to improve aerodynamic properties of the golf club head. One method of the present invention lowers the drag of the club head by specifying dimensional relationships of the driver head based on location of apex and nadir points, while another method lowers the drag of the club head by improving overall face design.
Abstract:
A face for a golf club head is disclosed herein. The face has an interior surface comprising a central region having a first perimeter having an elliptical shape, an outer edge having a non-elliptical, driver-face profile shape, a first intermediate region located between the first perimeter and the outer edge, the first intermediate region having a second perimeter with a shape that is more similar to the shape of the first perimeter than the shape of the outer edge, and a second intermediate region located between the second perimeter and the outer edge, the second intermediate region having a third perimeter with a shape that is more like the shape of the outer edge than the shape of the first perimeter. The thicknesses of the perimeters of the face disclosed herein may vary around their respective circumferences.
Abstract:
A face or face insert (40) for a golf club head (20) is disclosed herein. The face (40) has an interior surface (40b) with a first thickness section (200) and a second thickness region (205). The first thickness section (200) preferably has a thickness that is at least 0.025 inch greater than the thickness of the second thickness region (205). In a most preferred embodiment, the first thickness section (200) has an X shape that is rotated around the Y axis (500) by at least 10 degrees. In another preferred embodiment, the face has a first thickness section (200), a second thickness region (205), and a central region (400) having a third thickness. The face or face insert (40) with variable thickness allows for a face or face insert (40) with less mass in a golf club head (20) that conforms to the United States Golf Association regulations.
Abstract:
A method of forming a golf club head having improved aerodynamic characteristics. The method comprises a largest tangent circle method utilizing a cartesian coordinate system. The method results in the highest point of the crown surface located within a crown apex zone, wherein this location aids in the improved aerodynamic properties of the golf club head.
Abstract:
The present invention comprises a golf club head comprising a face component comprising a striking plate portion and a return portion extending rearward from the striking plate portion. The golf club head further comprises an aft-body attached to the return portion, wherein the aft-body is composed of an injection molded compound comprising long fibers.
Abstract:
A golf club head (42) having a substantially square or rectangular body is disclosed herein. The golf club head (42) preferably has a volume ranging from 420 cubic centimeters to 470 cubic centimeters. The golf club head (42) preferably has a face component (60), a mid-body (61) and an aft-weight component (65). The golf club head (42) preferably has a moment of inertia about the Izz axis through the center of gravity of the golf club head greater than 4000 grams-centimeters squared.
Abstract:
A golf club head (42) having a delta of the coefficient of restitution between a geometric face center of the face (72) and a location (806) 0.5 inch sole-ward from the face center that is less than 0.065. The golf club head (42) preferably has a volume ranging from 420 cubic centimeters to 470 cubic centimeters. The golf club head (42) preferably has a moment of inertia about the Izz axis through the center of gravity of the golf club head greater than 4000 grams-centimeters squared, and a moment of inertia about the Ixx axis through the center of gravity of the golf club head greater than 3000 grams-centimeters squared.
Abstract:
A golf club head (42) having a substantially square or rectangular body is disclosed herein. The golf club head (42) preferably has a volume ranging from 420 cubic centimeters to 470 cubic centimeters. The golf club head (42) preferably has a face component (60), a mid-body (61) and an aft-weight component (65). The golf club head (42) preferably has a moment of inertia about the Izz axis through the center of gravity of the golf club head greater than 4000 grams-centimeters squared.