Abstract:
A multi-domain liquid crystal display device includes: first and second substrates opposing each other; a liquid crystal layer formed between the first substrate and the second substrate; a plurality of gate lines and data lines formed on the first substrate lengthwise and crosswise to define pixel regions; a pixel electrode formed in the pixel regions; at least one or more electric field induction windows independently formed in the pixel electrode; a common auxiliary electrode formed on a layer equal to the gate lines to surround the pixel regions; a common electrode formed on the second substrate; at least one or more dielectric structures independently formed on the common electrode to distort electric field applied to the liquid crystal layer; and an alignment film formed on at least one of the first and second substrates.
Abstract:
A multi-domain liquid crystal display device includes first and substrates facing each other and a liquid crystal layer between the first and second substrates. A plurality of gate bus lines are arranged in a first direction on the first substrate and a plurality of data bus lines arranged in a second direction on the first substrate to define a pixel region. A pixel electrode is electrically charged through the data bus line in the pixel region. A common-auxiliary electrode surrounds the pixel electrode on a same layer whereon the gate bus line is formed.
Abstract:
A liquid crystal cell having a first substrate with a rubbed layer provided thereon, a second substrate with a photo-aligned layer provided thereon, and a liquid crystal material provided between the substrates.
Abstract:
A method for fabricating a liquid crystal cell and related device includes providing an alignment layer of a light sensitive material on a substrate; and exposing the alignment layer to unpolarized or partially polarized light, to provide pretilt for the molecules of the alignment layer.
Abstract:
A liquid crystal cell having a first substrate with a rubbed layer provided thereon, a second substrate with a photo-aligned layer provided thereon, and a liquid crystal material provided between the substrates.
Abstract:
A MIMO channel frequency response matrix is decomposed into a frequency-related par and a constant part. The constant part is independent of subcarrier index and of number of subcarriers in one symbol interval. Separated QR decomposition and either SVD or GMD is applied to the two parts. A right unitary matrix (R) is obtained from the SVD or GMD applied to the constant part. QR decomposition is applied to the constant part to generate a beamforming matrix (V). In another embodiment, a selection criterion based on a correlation matrix distance is used to select a beamforming matrix that is independent of subcarrier, the selected matrix is retrieved from a local memory and applied to a received signal. Noise covariance is computed for a noise expression which considers interference generated from the applied beamforming matrix. Data detection is performed on the received signal using the noise covariance.
Abstract:
A stereoscopic liquid crystal display includes an LCD panel with an upper substrate, a lower substrate disposed opposite the upper substrate, and a liquid crystal material between the upper and lower substrates. A lenticular plate is disposed above the LCD panel. An hole is formed in the lenticular plate. The hole provides and air conduit that communicates in a space between a surface of the LCD panel and a surface of the lenticular plate. The hole is configured to facilitate evacuation of air from the space between LCD panel and the lenticular plate. A sealant material is disposed in a predetermined pattern between the surfaces of the LCD panel and the lenticular plate. Air is evacuated through the hole and a vacuum is formed in the space between the LCD panel and the lenticular plate. The vacuum minimizes or eliminates a gap between the surfaces of the LCD panel and the lenticular plate.
Abstract:
A MIMO channel frequency response matrix is decomposed into a frequency-related part and a constant part. The constant part is independent of subcarrier index and of number of subcarriers in one symbol interval. Separated QR decomposition and either SVD or GMD is applied to the two parts. A right unitary matrix (R) is obtained from the SVD or GMD applied to the constant part. QR decomposition is applied to the constant part to generate a beamforming matrix (V). In another embodiment, a selection criterion based on a correlation matrix distance is used to select a beamforming matrix that is independent of subcarrier, the selected matrix is retrieved from a local memory and applied to a received signal. Noise covariance is computed for a noise expression which considers interference generated from the applied beamforming matrix. Data detection is performed on the received signal by a MIMO data detector using the noise covariance.
Abstract:
A multi-domain LCD device and a method for manufacturing the same are disclosed in which the process steps can be simplified and picture quality can be improved. The multi-domain LCD device includes first and second substrates, data and gate lines on the first substrate in first and second directions to define a plurality of pixel regions, a pixel electrode in each pixel region, having at least one slit pattern, a dielectric frame within the pixel regions on the second substrate to define a plurality of domains, and a liquid crystal layer between the first and second substrates. The method for manufacturing a multi-domain LCD device includes forming gate and data lines on a first substrate, the data line being formed to cross the gate line, forming a passivation film on the first substrate, forming a transparent conductive film on the passivation film, patterning the transparent conductive film to form a pixel electrode having at least one slit in a pixel region defined by the gate and data lines, forming a dielectric frame within the pixel region to define a plurality of domains on a second substrate opposite to the first substrate, and forming a liquid crystal layer between the first and second substrates.
Abstract:
Method, apparatus, and computer program product embodiments are disclosed to enable an access point in a wireless network to use Orthogonal Frequency-Division Multiple Access (OFDMA) reserve subcarriers of OFDM symbols for transmitting high priority voice data and video data to particular wireless devices, while the access point allocates the remaining available subcarriers for contention-based access by other wireless devices.