Abstract:
Provided are techniques for creating an inverted index for features of a set of data elements, wherein each of the data elements is represented by a vector of features, wherein the inverted index, when queried with a feature, outputs one or more data elements containing the feature. The features of the set of data elements are ranked. For each feature in the ranked list, the inverted index is queried for data elements having the feature and not having any previously selected feature and a cluster of the data elements is created based on results returned in response to the query.
Abstract:
Systems and associated methods for address standardization and applications related thereto are described. Embodiments exploit a common context in a taxonomy and a given address to detect and correct deviations in the address. Embodiments establish a possible path from a root of the taxonomy to a leaf in the taxonomy that can possibly generate a given address. Given a new address, embodiments use complete addresses, and/or segments or elements thereof, to compute the representations of the elements and find a closest matching leaf in the taxonomy. Embodiments then traverse the path to a root node to detect the agreement and disagreement between the path and the address entry. Taxonomical structured is thus used to detect, segregate and standardize the expected fields.
Abstract:
A process for evaluating cross-domain clusterability upon a target domain and a source domain. The cross-domain clusterability is calculated as a linear combination of a target clusterability and a source-target pair matchability, by use of a trade-off parameter that determines relative contribution of the target clusterability and the source-target pair matchability. The target clusterability quantifies how clusterable the target domain is. The source-target pair matchability is calculated as an average of a target-side matchability and a source-side matchability, which quantifies how well target centroids of the target domain are aligned with the source centroids and how well source centroids of the source domain are aligned with the target centroids, respectively.
Abstract:
A computer system for evaluating cross-domain clusterability upon a target domain and a source domain. The cross-domain clusterability is calculated as a linear combination of a target clusterability and a source-target pair matchability, by use of a trade-off parameter that determines relative contribution of the target clusterability and the source-target pair matchability. The target clusterability quantifies how clusterable the target domain is. The source-target pair matchability is calculated as an average of a target-side matchability and a source-side matchability, which quantifies how well target centroids of the target domain are aligned with the source centroids and how well source centroids of the source domain are aligned with the target centroids, respectively.
Abstract:
Methods and arrangements for enhancing content in discussion forums. Access to an online discussion is provided. A posting by an author participating in the discussion is accepted, and a recommendation is automatically produced for the author for amending the posting to increase the likelihood of response to the posting by other individuals participating in the discussion.
Abstract:
Systems and associated methods for address standardization and applications related thereto are described. Embodiments exploit a common context in a taxonomy and a given address to detect and correct deviations in the address. Embodiments establish a possible path from a root of the taxonomy to a leaf in the taxonomy that can possibly generate a given address. Given a new address, embodiments use complete addresses, and/or segments or elements thereof, to compute the representations of the elements and find a closest matching leaf in the taxonomy. Embodiments then traverse the path to a root node to detect the agreement and disagreement between the path and the address entry. Taxonomical structured is thus used to detect, segregate and standardize the expected fields.
Abstract:
Techniques for detecting one or more documents that are duplicate or near-duplicate of a first document are provided. The techniques include obtaining a first document, obtaining one or more additional documents, retrieving a set of one or more document signatures for each document, and detecting one or more documents that are duplicate or near-duplicate of the first document by detecting each of the one or more additional documents that have at least a minimum number of signatures in common with the first document, wherein detecting each of the one or more additional documents that have at least a minimum number of signatures in common with the first document comprises dynamically using at least one of a user-configurable similarity definition and a user-configurable similarity threshold value.
Abstract:
Methods, apparatus and computer programs are provided for characterizing Web-based information resources based on their interactions. A Web-based information resource is a single Web document or a collection of related Web documents. Unlike simple text documents, Web documents contain hyperlinks and other HTML tags. Different types of interactions, including inbound hyperlinks, outbound hyperlinks and internal links associated with a Web-based information resource, are used to characterize the Web-based information resource. A DOM tree representing the tag structure of a Web-based information resource is used to identify text items likely to be useful as context for a hyperlink anchor text, and the anchor text is combined with the context to generate a representation. The representation of Web-based information resources based on interactions can be used for clustering and classification, and in Web mining applications such as query disambiguation and automatic taxonomy generation.
Abstract:
Documents are represented based on their structure, which arises from the relationship between various elements in the document. After representing documents based on their structure in vector form, a method of measuring similarity between vectors is used to obtain the measure of structural similarity between two given documents.
Abstract:
Techniques for detecting one or more documents that are duplicate or near-duplicate of a first document are provided. The techniques include obtaining a first document, obtaining one or more additional documents, retrieving a set of one or more document signatures for each document, and detecting one or more documents that are duplicate or near-duplicate of the first document by detecting each of the one or more additional documents that have at least a minimum number of signatures in common with the first document, wherein detecting each of the one or more additional documents that have at least a minimum number of signatures in common with the first document comprises dynamically using at least one of a user-configurable similarity definition and a user-configurable similarity threshold value.