摘要:
One aspect of the method/apparatus finds, for each input-image pixel, an “offset weighted average” of neighboring-pixel interactions—and uses the averages to make a final image. Another aspect assumes a value for each pixel, to use in a final rendered image form—and, at each in a series of approximations, determines whether to change the value, and finds a probabilistic weight to help determine. Yet another finds, for each pixel, a numerical representation of neighboring-pixel interactions—and establishes a distance cutoff for use in defining “neighbor”, and uses the representation to decide whether to change color values. Still another finds a desired or ideal number of print passes, and adapts the number of passes actually used to the found number. Another combines halftoning and printmasking into one procedure and prints images prepared thereby. Another integrates halftoning and image filtering, to obtain esthetic visual effects, into one procedure—and prints images thus prepared.
摘要:
One aspect of the invention lowers boundary artifacts by depleting selectively at a boundary, only in high-color-saturation areas. In another aspect, printmasking defines depletion regions. In yet another, a printer treats different drop-to-pass allocations as of opposite sign. Some preferred embodiments exploit the multilayer Shakes mask system: each mask represents a number of drops to fire, and masks are additive, depending on image content. In preferred embodiments the high-value mask is used in opposition, reducing the number of drops to fire. Bits are set in this mask at pixels close to boundaries, to define depletion regions that negate artifact-causing boundary coalescence. An adaptive version measures nonuniformity in an area-fill test pattern, and uses results to define localized depletion bits for high-value mask(s).