Abstract:
Methods for expressing a functional heteromeric taste receptor that responds to sweet taste stimuli are provided. These methods comprise the co-expression of T1R2 and T1R3 nucleic acid sequences in a host cell that desirably further expresses a G protein that couples therewith, e.g., Gα15, Gα16 or gustducin. In preferred embodiments, the host cells will be mammalian cells or Xenopus oocytes. These nucleic acid sequences are expressed constitutively or under inducible conditions. In preferred embodiments the expression methods will use HEK-293 cells that also stably express Gα15. These methods give rise to heteromeric receptors and compositions containing that are useful in assays for identifying novel sweeteners and sweetness modulators.
Abstract:
Binding assays for identifying compounds that induce or modulate the T1R1/T1R3 (umami) receptor-associated taste are provided. These binding assays detect the specific binding of a compound to a T1R1/T1R3 (umami) taste receptor or detect the modulation (inhibition or enhancement) of the binding of another compound, e.g., L-glutamate, L-aspartate or lactisole to a T1R1/T1R3 umami taste receptor. Compounds that are identified in these binding assays have potential application as T1R1/T1R3 umami taste modulators and therefore can be used as flavor additives in compositions for human or animal consumption.
Abstract:
Functional assays for identifying compounds that activate or modulate the activation of the T1R2/T1R3 (sweet) taste receptor are provided. These assays detect the effect of one or more compounds on the activation of T1R2/T1R3 (sweet) taste receptor or on the activation of T1R2/T1R3 sweet taste receptor by another, compound e.g., saccharin or another artificial or natural sweetener. These assays preferably are cell-based functional assays and typically use cells, e.g., HEK-293 cells that stably express a G protein such as Gα15, Gα16 or gustducin. Compounds identified in the disclosed functional assays are potentially useful as additives in compositions for human or animal consumption.
Abstract:
Provided herein are in vitro (cell-free) protein translation (IVT) systems for the expression of kinases. In particular, provided herein is an IVT system for the expression of a panel of protein tyrosine kinases (PTK), (e.g., receptor protein tyrosine kinases (RTK) and/or cytoplasmic tyrosine kinases (CTK)), and/or fragments thereof (e.g., kinase domains and/or active fragments thereof).
Abstract:
In certain embodiments, this present invention provides polypeptide compositions, and methods for inhibiting Ephrin B2 or EphB4 activity. In other embodiments, the present invention provides methods and compositions for treating cancer or for treating angiogenesis-associated diseases.
Abstract:
Newly identified mammalian taste-cell-specific G protein-coupled receptors, and the genes and cDNA encoding said receptors are described. Specifically, T1R G protein-coupled receptors active in taste signaling, and the genes and cDNA encoding the same, are described, along with methods for isolating such genes and for isolating and expressing such receptors. Methods for representing taste perception of a particular tastant in a mammal are also described, as are methods for generating novel molecules or combinations of molecules that elicit a predetermined taste perception in a mammal, and methods for simulating one or more tastes. Further, methods for stimulating or blocking taste perception in a mammal are also disclosed.
Abstract:
The present invention relates to the discovery that the T1R receptors assemble to form functional taste receptors. Particularly, it has been discovered that co-expression of T1R1 and T1R3 results in a taste receptor that responds to umami taste stimuli, including monosodium glutamate. Also, it has been discovered that co-expression of the T1R2 and T1R3 receptors results in a taste receptor that responds to sweet taste stimuli including naturally occurring and artificial sweeteners.Also the present invention relates to the use of hetero-oligomeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compounds that respectively respond to umami taste stimuli and sweet taste stimuli.
Abstract:
Provided are compounds of the formula (I): or a stereoisomer, tautomer, salt, hydrate or prodrug thereof that modulate tyrosine kinase activity, compositions comprising the compounds and methods of their use.
Abstract:
Newly identified mammalian taste-cell-specific G protein-coupled receptors, and the genes and cDNA encoding said receptors are described. Specifically, T1R G protein-coupled receptors active in taste signaling, and the genes and cDNA encoding the same, are described, along with methods for isolating such genes and for isolating and expressing such receptors. Methods for representing taste perception of a particular tastant in a mammal are also described, as are methods for generating novel molecules or combinations of molecules that elicit a predetermined taste perception in a mammal, and methods for simulating one or more tastes. Further, methods for stimulating or blocking taste perception in a mammal are also disclosed.
Abstract:
Newly identified mammalian taste-cell-specific G protein-coupled receptors, and the genes and cDNA encoding said receptors are described. Specifically, T1R G protein-coupled receptors active in taste signaling, and the genes and cDNA encoding the same, are described, along with methods for isolating such genes and for isolating and expressing such receptors. Methods for representing taste perception of a particular taste stimulus in a mammal are also described, as are methods for generating novel molecules or combinations of molecules that elicit a predetermined taste perception in a mammal, and methods for simulating one or more tastes. Further, methods for stimulating or blocking taste perception in a mammal are also disclosed.