Abstract:
The present invention relates to a negative-working radiation imageable lithographic printing plate precursor, preferably having only two polymeric layers on a support. The first (bottom) layer is composed of oleophilic polymers and a photothermal converter which converts radiation to heat. The second polymeric layer (top) is composed of crosslinked hydrophilic polymers which absorb aqueous fountain solution and repel ink. The oleophilic polymers in the first layer contain functional groups are interlayer chemically bonded to the hydrophilic polymer in the second layer to provide interlayer adhesive bonding between the two layers. The plate is imagewise exposed to radiation, such as with an IR laser, resulting in non-ablative adhesion-weakening between the two layers so that the plate can be developed by fountain solution and/or ink on press whereby the top layer in the exposed area is removed on the press to reveal the ink-receptive image area. The top layer in the unexposed area remains as the non-image area.
Abstract:
Presensitized lithographic plates are prepared which permit direct formation of printable images on plates by digital computerization without the intervening formation of a photographic image with a quality that allows the plates to be used for high volume printing applications. The lithographic printing plate has a structure which contains a substrate; a positive or negative working photosensitive layer; and a thermally sensitive masking layer which is opaque to the actinic radiation but which is soluble in an aqueous medium. The masking layer contains a heat softenable disperse phase which is insoluble in the aqueous medium; a polymeric continuous phase which is soluble or swellable in the aqueous medium; and a colorant which strongly absorbs radiant energy and converts the radiant energy to heat. In use the masking layer is digitally exposed to a computer controlled laser image so that exposed image areas of the masking are insolublized in the aqueous medium; soluble areas of the mask layer are then removed to form an opaque image mask on the photosensitive layer which is then exposed to actinic radiation passing through the mask to solubilize or insolubilize exposed areas of the photosensitive layer; the photosensitive layer is then developed with the developer liquid to remove the soluble areas and any overlying mask areas to form the lithographic printing plate. Both wet and waterless lithographic printing plates may be digitally prepared in this manner.