Abstract:
Swaging a suspension base plate to an actuator arm for a hard disk drive. A portion of material adjacent to a hole in the actuator arm is removed to create an opening to receive material. A flange of the suspension base plate is inserted into the hole in the actuator arm. The suspension base plate is swaged to the actuator arm, wherein the swaging causes material from the suspension base plate to flow into the opening.
Abstract:
A flexure for supporting a head in a disk drive includes a tongue including a head mounting surface for attaching the head. The flexure further includes a first arm on a first side of the tongue. The first arm includes a structural material and has a first cross-sectional area in a plane perpendicular to the head mounting surface. The first cross-sectional area has a first centroid. The flexure further includes a second arm on the first side of the tongue. The second arm includes a conductive material layer. The second arm has a second cross-sectional area in the plane perpendicular to the head mounting surface. The second cross-sectional area has a second centroid. The second centroid is not offset from the first centroid by more than 10 microns in a direction perpendicular to the head mounting surface.
Abstract:
Mounts for securing magnetic disk drive head suspensions to actuator arms. The mounts include structures that snap onto the actuator arm to provide a secure friction fit engagement. The mounts can be efficiently removed to permit rework of the suspension and head components.
Abstract:
A baseplate for swaging a head suspension to an actuator arm includes a flange with an opening having a back bore diameter and a boss tower extending from the flange and having an outer diameter. The back bore diameter is less than or equal to about 105% of the outer diameter and greater than or equal to about 90% of the outer diameter.