Abstract:
The present invention discloses a concept of natural index contrast (NIC) for producing photonic waveguides and methods of fabrication thereof. Such waveguide forms the basis of a class of chip-scale micro- and nano-photonic integrated circuits (PICs). The NIC method utilizes the built-in refractive index difference between two layers of dielectric thin films of two different materials, one laid on top of another. This new class of waveguides simplifies the PIC fabrication process significantly. Based on the NIC based waveguides, PICs can be fabricated for a number of photonic applications such as arrayed waveguide grating (AWG), reflective arrayed waveguide grating (RAWG), interleaver, interferometer, and optical sensor. Additionally, several other PICs can also be fabricated via tiers of integration, such as triple-phase integration. Examples of such devices include optical amplifier, wavelength router, sensor, optical modulator, transmitter, receiver, transponder, fully built dense wavelength division multiplexer and demultiplxer, optical power splitter, multicahnnel tunable optical attenuator, and multicahnnel tunable optical add-drop multiplexer. Unlike hybrid integration, triple-phase integration monolithically integrates multiple optical functionalities on a single chip.
Abstract:
A color coded elastomeric ring is fit onto a dental instrument. The elastomeric ring includes axial and circumferential formations for increased traction of a dental practitioner's finger to manipulate the instrument. Advantageously, two elastomeric rings are provided, one at each end of the instrument. Each elastomeric ring preferably has an outside profile with a decreasing diameter toward the adjacent end of the instrument. The ring is located adjacent to a receiving port for a tool insert or point.
Abstract:
A motor vehicle early warning system is provided for enabling a motor vehicle to receive a warning signal (e. g., a brake activation signal) from a preceding vehicle and automatically and instantaneously transmit a warning signal to a following vehicle independently of any reaction time on the part of the driver of the motor vehicle. A receiver is located at the front of each vehicle for receiving a warning signal from the vehicle ahead of it. A transmitter is located at the rear of each vehicle for transmitting a warning signal to the vehicle behind it. A control unit is located on board each vehicle for responding to the reception of a warning signal by it's receiver for automatically causing it's transmitter to transmit a warning signal to the vehicle behind it.