Abstract:
A display panel and a display device are provided. The display panel includes a base substrate, the base substrate includes a display region and a non-display region, the display region includes a main display region and a peripheral display region, and the peripheral display region includes an irregular display region; the non-display region includes a first region and a second region, the first region is adjacent to the irregular display region, and the second region is adjacent to other regions of the peripheral display region than the irregular display region; the display region includes at least one signal line, the non-display region includes at least one functional circuit and at least one wire, and the at least one functional circuit is coupled to the at least one signal line via the at least one wire.
Abstract:
A display panel, a method for driving the display panel, and a display device are provided. The display panel includes a display region and a peripheral region surrounding the display region. Multiple gate lines each extending in a first direction and multiple data lines each extending in a second direction are arranged at the display region. A multiplexer is arranged at the peripheral region. The multiplexer is used to, under the control of gate line ON signals from a gate line switching control line, input gate line signals from a source driver unit to corresponding gate lines, and under the control of data line ON signals from corresponding data line switching control lines, input data signals from the source driver unit to corresponding data lines.
Abstract:
The present invention provides a display panel and a display method thereof, and a display device. The display panel comprises a plurality of circulation units, wherein each circulation unit is composed of one sub-pixel array or is composed of a plurality of sub-pixel arrays aligned in a row or column direction, and each sub-pixel array is composed of six sub-pixels arranged in two rows and three columns, wherein the six sub-pixels of each sub-pixel array include three color sub-pixels and three compensation sub-pixels, the three color sub-pixels include one red sub-pixel, one green sub-pixel and one blue sub-pixel, the three compensation sub-pixels are different from one another in color, and the sub-pixels with the same color are not adjacent to each other in the row direction and the column direction.
Abstract:
The present invention provides a display panel and a display method thereof, and a display device. The display panel comprises a plurality of circulation units, each circulation unit is composed of two rows of sub-pixels, the sub-pixels in each row include one red sub-pixel, one green sub-pixel and one blue sub-pixel, and the sub-pixels in a first row are provided to shift by a half size of the sub-pixel in a row direction with respect to the sub-pixels in a second row, respectively, and an arrangement mode of the sub-pixels in the first row is different from that of the sub-pixels in the second row. The display method comprises: determining initial components of the sub-pixels according to a picture to be displayed; and determining a display component of a sub-pixel according to the initial components of the sub-pixel and common sub-pixels of the sub-pixel.
Abstract:
A wiring structure includes a plurality of first connection lines disposed in a first wiring layer and extending respectively from first ones of the plurality of first electrical contacts to first ones of the plurality of second electrical contacts, the first connection lines not intersecting each other; and a plurality of second connection lines disposed in a second wiring layer and extending respectively from second ones of the plurality of first electrical contacts to second ones of the plurality of second electrical contacts, the second connection lines not intersecting each other. An orthographic projection of any one of the first connection lines onto a plane parallel to the first and second wiring layers does not intersect an orthographic projection of any one of the second connection lines onto the plane.
Abstract:
A display device, a pixel compensation circuit and a driving method thereof are disclosed. The pixel compensation circuit includes: a driving transistor, an initialization circuit, a storage circuit, a first data writing circuit, a second data writing circuit, a compensation circuit and a light emitting control circuit. A first terminal of the storage circuit is coupled to the gate electrode of the drive transistor, and the first data writing circuit is configured to write a data signal to a second terminal of the storage circuit. The second data writing circuit is configured to change a potential of the second terminal of the storage circuit so that a potential of the first terminal of the storage circuit is associated with the data signal. The compensation circuit is configured to charge the first terminal of the storage circuit so that it is associated with a threshold voltage of the drive transistor.
Abstract:
The present disclosure relates to the technical field of display. Disclosed are an array substrate and a preparation method therefor, and a display panel and a display device. The array substrate includes: a substrate; multiple gate lines, wherein the gate lines are located on the substrate, and extend along a first direction; multiple data lines, wherein the data lines are located on the substrate, and extend along a second direction, and the gate lines and the data lines intersect to define multiple pixel areas; and a touch-control electrode wiring wherein the touch-control electrode wiring has the same direction as that of the gate lines, and is arranged insulated from the gate lines on a different layer, and the orthographic projection of the touch-control electrode wiring on the substrate at least has an overlapping area with the orthographic projection of part of the gate lines on the substrate.
Abstract:
A display substrate comprises a display area and a non-display area around the display area; at least one ground terminal located in the non-display area; a first wiring disposed in the non-display area and being around the display area; and a second wiring disposed between the first wiring and the display area and being positioned around the non-display area. The second wiring is provided with at least one tip on a side closer to the first wiring, the at least one tip pointing to the side of the first wiring. The first wiring and the second wiring are respectively connected to the at least one ground terminal.
Abstract:
A shift register includes a first input sub-circuit configured to transfer a first input signal at a first input terminal to a first node in response to a first scan signal at a first scan terminal being active, a first level control sub-circuit configured to transfer a first power supply voltage at a first power supply terminal to a first output control node and a second output control node in response to the first node being at an active potential, and an output sub-circuit configured to transfer a first clock signal at a first clock terminal to a first output in response to the first output control node being at an active potential, and to transfer a second clock signal at a second clock terminal to a second output terminal in response to the second output control node being at an active potential.
Abstract:
A driving circuit for a full-color OLED pixel and a driving method of the driving circuit. The full-color OLED pixel comprises at least two color thin film layers stacked (Color1, Color2, Color3) and insulating layers (Ins1, Ins2) arranged between any two adjacent thin film layers. The driving circuit comprises at least two driving sub-circuits, the at least two driving sub-circuits share a data line (DATA) and a light-emitting control terminal (EM), and each of the driving sub-circuits is connected to a scanning control terminal corresponding thereto (SCAN1, SCAN2, SCAN3) and is configured to drive the color thin film layer corresponding thereto. The at least two driving sub-circuits read data signals on the data line in sequence under the control of the respective scanning control terminals, and drive the respective color thin film layers to emit light concurrently under the control of the light-emitting control terminal. Full-color display of the full-color OLED pixel is achieved by reading in sequence corresponding data signals for the at least two color thin film layers stacked and controlling the at least two color thin film layers to emit light concurrently.