APPARATUS AND METHODS FOR GATING ANALOG AND SPIKING SIGNALS IN ARTIFICIAL NEURAL NETWORKS
    21.
    发明申请
    APPARATUS AND METHODS FOR GATING ANALOG AND SPIKING SIGNALS IN ARTIFICIAL NEURAL NETWORKS 有权
    人造神经网络模拟和扫描信号的装置和方法

    公开(公告)号:US20140222739A1

    公开(公告)日:2014-08-07

    申请号:US13761090

    申请日:2013-02-06

    Inventor: Filip Ponulak

    CPC classification number: G06N3/049

    Abstract: Apparatus and methods for universal node design implementing a universal learning rule in a mixed signal spiking neural network. In one implementation, at one instance, the node apparatus, operable according to the parameterized universal learning model, receives a mixture of analog and spiking inputs, and generates a spiking output based on the model parameter for that node that is selected by the parameterized model for that specific mix of inputs. At another instance, the same node receives a different mix of inputs, that also may comprise only analog or only spiking inputs and generates an analog output based on a different value of the node parameter that is selected by the model for the second mix of inputs. In another implementation, the node apparatus may change its output from analog to spiking responsive to a training input for the same inputs.

    Abstract translation: 通用节点设计的装置和方法在混合信号加标神经网络中实现通用学习规则。 在一个实现中,在一个实例中,节点装置可根据参数化通用学习模型操作,接收模拟和加注输入的混合,并且基于由参数化模型选择的该节点的模型参数生成加标输出 对于具体的投入组合。 在另一个实例中,同一节点接收不同的输入混合,其也可以仅包括模拟或仅包括输入,并且基于由模型为第二混合输入选择的节点参数的不同值生成模拟输出 。 在另一实现中,节点装置可以响应于针对相同输入的训练输入而将其输出从模拟改变为尖峰。

    Hierarchical robotic controller apparatus and methods

    公开(公告)号:US09792546B2

    公开(公告)日:2017-10-17

    申请号:US13918298

    申请日:2013-06-14

    CPC classification number: G06N3/049 G06N3/008

    Abstract: A robot may be trained by a user guiding the robot along target trajectory using a control signal. A robot may comprise an adaptive controller. The controller may be configured to generate control commands based on the user guidance, sensory input and a performance measure. A user may interface to the robot via an adaptively configured remote controller. The remote controller may comprise a mobile device, configured by the user in accordance with phenotype and/or operational configuration of the robot. The remote controller may detect changes in the robot phenotype and/or operational configuration. The remote controller may comprise multiple control elements configured to activate respective portions of the robot platform. Based on training, the remote controller may configure composite controls configured based two or more of control elements. Activation of a composite control may enable the robot to perform a task.

    PREDICTIVE ROBOTIC CONTROLLER APPARATUS AND METHODS
    23.
    发明申请
    PREDICTIVE ROBOTIC CONTROLLER APPARATUS AND METHODS 审中-公开
    预测机器人控制器设备及方法

    公开(公告)号:US20160303738A1

    公开(公告)日:2016-10-20

    申请号:US15132003

    申请日:2016-04-18

    Abstract: Robotic devices may be trained by a user guiding the robot along target action trajectory using an input signal. A robotic device may comprise an adaptive controller configured to generate control signal based on one or more of the user guidance, sensory input, performance measure, and/or other information. Training may comprise a plurality of trials, wherein for a given context the user and the robot's controller may collaborate to develop an association between the context and the target action. Upon developing the association, the adaptive controller may be capable of generating the control signal and/or an action indication prior and/or in lieu of user input. The predictive control functionality attained by the controller may enable autonomous operation of robotic devices obviating a need for continuing user guidance.

    Abstract translation: 机器人设备可以由用户使用输入信号沿着目标动作轨迹引导机器人进行训练。 机器人设备可以包括自适应控制器,其被配置为基于用户引导,感觉输入,性能测量和/或其他信息中的一个或多个来产生控制信号。 培训可以包括多个试验,其中对于给定的上下文,用户和机器人的控制器可以协作以在上下文和目标动作之间建立关联。 在开发关联时,自适应控制器可以能够在用户输入之前和/或代替用户输入时产生控制信号和/或动作指示。 由控制器获得的预测控制功能可以实现机器人设备的自主操作,从而避免需要持续的用户指导。

    Discrepancy detection apparatus and methods for machine learning
    24.
    发明授权
    Discrepancy detection apparatus and methods for machine learning 有权
    差异检测装置和机器学习方法

    公开(公告)号:US09248569B2

    公开(公告)日:2016-02-02

    申请号:US14088258

    申请日:2013-11-22

    Abstract: A robotic device may comprise an adaptive controller configured to learn to predict consequences of robotic device's actions. During training, the controller may receive a copy of the planned and/or executed motor command and sensory information obtained based on the robot's response to the command. The controller may predict sensory outcome based on the command and one or more prior sensory inputs. The predicted sensory outcome may be compared to the actual outcome. Based on a determination that the prediction matches the actual outcome, the training may stop. Upon detecting a discrepancy between the prediction and the actual outcome, the controller may provide a continuation signal configured to indicate that additional training may be utilized. In some classification implementations, the discrepancy signal may be used to indicate occurrence of novel (not yet learned) objects in the sensory input and/or indicate continuation of training to recognize said objects.

    Abstract translation: 机器人设备可以包括被配置为学习预测机器人设备的动作的后果的自适应控制器。 在训练期间,控制器可以接收基于机器人对命令的响应获得的计划和/或执行的电动机命令和感觉信息的副本。 控制器可以基于命令和一个或多个现有的感觉输入来预测感觉结果。 预测的感觉结果可能与实际结果进行比较。 根据预测与实际结果的匹配,培训可能会停止。 在检测到预测和实际结果之间的差异时,控制器可以提供被配置为指示可以利用附加训练的连续信号。 在一些分类实现中,差异信号可以用于指示感觉输入中的新颖(尚未学习)的对象的发生和/或指示用于识别所述对象的训练的继续。

    ROBOTIC TRAINING APPARATUS AND METHODS
    25.
    发明申请
    ROBOTIC TRAINING APPARATUS AND METHODS 有权
    机器人训练装置及方法

    公开(公告)号:US20140371907A1

    公开(公告)日:2014-12-18

    申请号:US13918338

    申请日:2013-06-14

    Abstract: Apparatus and methods for training of robotic devices. Robotic devices may be trained by a user guiding the robot along target trajectory using an input signal. A robotic device may comprise an adaptive controller configured to generate control commands based on one or more of the user guidance, sensory input, and/or performance measure. Training may comprise a plurality of trials. During first trial, the user input may be sufficient to cause the robot to complete the trajectory. During subsequent trials, the user and the robot's controller may collaborate so that user input may be reduced while the robot control may be increased. Individual contributions from the user and the robot controller during training may be may be inadequate (when used exclusively) to complete the task. Upon learning, user's knowledge may be transferred to the robot's controller to enable task execution in absence of subsequent inputs from the user

    Abstract translation: 用于训练机器人装置的装置和方法。 机器人装置可以由用户使用输入信号沿目标轨迹引导机器人进行训练。 机器人设备可以包括自适应控制器,其被配置为基于用户引导,感觉输入和/或性能测量中的一个或多个来产生控制命令。 培训可能包括多项试验。 在第一次试用期间,用户输入可能足以使机器人完成轨迹。 在随后的试验期间,用户和机器人的控制器可以协作,以便可以减少用户输入,同时可以增加机器人控制。 在训练期间来自用户和机器人控制器的个人贡献可能不足以(完全用于完成任务)。 在学习之后,用户的知识可以传送到机器人的控制器,以便在没有用户的后续输入的情况下执行任务执行

Patent Agency Ranking