Abstract:
The invention is an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. The seismic source includes systems for driving the acoustic energy systems using electric energy concurrently from both the generator and an electric energy accumulator such as a capacitor or battery, systems for adjusting the weight on the acoustic energy delivery system by raising and lowering wheels individually and an active energy isolation to isolate the chocks and impulses of the acoustic energy delivery system from the remainder of the seismic source.
Abstract:
The invention is an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. Preferably a foot is arranged on the bottom end of the rod or piston for contact with the ground and by engaging the grid of motors to push down against the ground in a rapid progression, acoustic energy is created and delivered into the ground for geophones to sense and record. However, the rapid progression of pulses or sweep of seismic energy is delivered in a distinctive fashion as compared to a conventional upsweep or downsweep and the distinctiveness is also achieved by creating a designed cadence or timing such that each pulse in a series of pulses is not delivered in a regular timing. Several similar seismic sources may be employed where each is provided with its own distinctive series of pulses such that each may be identified within the data record and source separation from a number of seismic sources may be accomplished.
Abstract:
The invention is an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. Preferably, a foot is arranged on the bottom end of the rod or piston for contact with the ground and by engaging the grid of motors to push down against the ground in a rapid progression, acoustic energy is created and delivered into the ground for geophones to sense and record.
Abstract:
The invention is an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. The seismic source further includes an active isolation system that provides for significant weight on the ground through the rods of the linear electric motors, but protects the vehicle body and the remainder of the systems on the seismic source to be insulated from the harshest vibration related to the acoustic energy being applied to the ground. The active isolation system may include reactive elements such as pneumatic and hydraulic shock absorbers, but also includes active elements such as linear motors operated to counteract the impulsive forces from conveying through the frame of the seismic source.
Abstract:
The invention is an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. Preferably a foot is arranged on the bottom end of the rod or piston for contact with the ground and by engaging the grid of motors to push down against the ground in a rapid progression, acoustic energy is created and delivered into the ground for geophones to sense and record. However, the rapid progression of pulses or sweep of seismic energy is delivered in a distinctive fashion as compared to a conventional upsweep or downsweep and the distinctiveness is also achieved by creating a designed cadence or timing such that each pulse in a series of pulses is not delivered in a regular timing. Several similar seismic sources may be employed where each is provided with its own distinctive series of pulses such that each may be identified within the data record and source separation from a number of seismic sources may be accomplished.
Abstract:
The invention is an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power to drive a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion. Preferably, a foot is arranged on the bottom end of the rod or piston for contact with the ground and by engaging the grid of motors to push down against the ground in a rapid progression, acoustic energy is created and delivered into the ground for geophones to sense and record.
Abstract:
The invention is an electric powered mechanism for lifting and lowering at the wheels for an electric sweep type seismic vibrator source of the type used in seismic prospecting for hydrocarbons. The source uses an engine and generator combination to create electric power for all systems on the source such as driving a frame of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion along with driving the source from location to location through a survey area. Preferably a foot is arranged on the bottom end of the rod or piston for contact with the ground and by engaging the grid of motors to push down against the ground in a rapid progression, acoustic energy is created and delivered into the ground for geophones to sense and record. The electric powered wheel mechanism may be utilized to bring the foot of the rod or piston in contact with the ground or in closer proximity to the ground or level the source prior to emitting the seismic energy or to adjust weight on the acoustic energy delivery system while seismic energy is being delivered.
Abstract:
The invention is an improved technique for measuring near surface attributes of the ground while conducting a seismic survey. The improved technique is enabled by an electric vibe using a number of linear electric motors that direct a rod or piston to contact the ground in a recurring fashion. By applying constant force on the rods of the linear electric motors against the ground, the penetration into the ground may be measured for both rate and overall deformation. This information provides an accurate indication of viscosity and stiffness. In addition shear velocity and compression velocity may be measured and in some conditions, even the type of prominent shear wave may be identified for the area.
Abstract:
Methods of analyzing and optimizing a seismic survey design are described. Specifically, the sampling quality is analyzed as opposed to the overall quality of the whole survey. This allows for analysis of the impact of the offsets, obstacles, and other aspects of the survey on the sampling quality, which will improve the ability to compress the resulting data and minimize acquisition footprints.
Abstract:
The invention relates to an arrangement for seismic acquisition the spacing between each adjacent pairs of receiver and sources lines is not all the same. Some receiver and/or source lines and/or receiver and/or source spacings are larger and some are smaller to provide a higher quality wavefield reconstruction when covering a larger total area or for a similar total area of seismic data acquisition while providing a wavefield that is optimally sampled by the receivers and sources so that the wavefield reconstruction is suitable for subsurface imaging needs.