Abstract:
An interferometer mounting mechanism that consists of a horizontal shaft rigidly connected to the interferometer in axial alignment with the optical path of the instrument and protruding through an opening in the center of the transmission flat. A sample stage adapted to receive a computer-drive disk is attached to the distal end of the shaft, so that the stage is directly and rigidly connected to the interferometer. The sample stage consists of a hub capable of retaining a disk in precise alignment with the transmission flat by hanging its center hole on two support posts and resting the disk on three pressure tips on the hub. A system of push-pull adjustment screws is provided to set the proper tip/tilt of the disk.
Abstract:
A method and apparatus for measuring an absolute profile of a flat using an interferometer system that includes an interferometer adapted to support two flats, a detection system, and a computer adapted to compute the OPD (optical path difference) between surface of the two flats, wherein a first flat A! having a first surface and a second flat B! having a second surface are supported in the interferometer, with the second surface facing the first surface. The interferometer system measures the OPDs between the first and second surfaces for each pixel. The first flat A! then is rotated by a number of predetermined angles relative to its initial position and each time the OPDs are measured. The first flat A! is rotated to its initial position or 180.degree. therefrom. A third flat C! having a third surface is substituted for the second flat. The OPDs between the first and third surfaces are measured. The first flat A! is replaced by the second flat, with the second surface facing the third in an orientation mirror imaged to its original orientation. The interferometer system is operated to measure the OPDs. The computer solves first, second, and third equations to obtain the entire surface topographies of the first, second, and third surface, wherein each equation is expressed as a sum of even--even, even-odd, odd-even, and odd--odd parts so as to effectuate cancellation of terms, permitting solving of the equations for the surface topography.
Abstract:
The invention provides a technique for eliminating "ripple" or ghost fringes from a wavefront transmitted by an optical window with a very small wedge angle, distortions in the wavefront being measured by an interferometer. A collimated beam produced by the interferometer is transmitted through the optical window, which is tilted so as to prevent direct reflections from entering a detector of the interferometer. The beam transmitted through the window is reflected by a return flat back through the window and transmitted to the detector. The return flat is tilted slightly in the direction of or opposite to the direction of tilt of the window, causing the re-incident angle of the returned ray to be different from the original incident angle of the collimated beam. This causes the multiple reflections within the window to be different and to be out of phase. The ghost fringes are cancelled by appropriately tilting the return flat.