Abstract:
The present invention provides systems and methods for enabling a navigation signal receiver to perform both data assisted and non-data assisted integration to provide better integration during signal acquisition, reacquisition and tracking. In data assisted integration mode, a receiver uses known or predicted data bits to remove the modulated data bits of a received signal prior to integration. In non data assisted integration mode, when the data bits are not known or predictable, the receiver uses an optimal estimation or maximum likelihood algorithm to determine the polarities of the modulated data bits of the received signal. This may be done by determining which of various possible bit pattern yields the maximum integrated power. When the modulated data bits are not known or predictable over a limited range, the receiver carries out data assisted integration over the known or predictable data bits and additional non data assisted integration.
Abstract:
The present invention provides GPS receivers with clock calibration for fast reacquisition of GPS signals after waking up from a sleep state or coming out of signal blockage. In a preferred embodiment, a GPS receiver comprises a local clock based on an oscillator, e.g., crystal oscillator. The GPS receiver calculates a clock calibration value based on a computed oscillator count for the period during which the GPS receiver is in the sleep state or the signal is blocked. This clock calibration value is used to calibrate the local clock after the GPS receiver wakes up or comes out of signal blockage for fast reacquisition of GPS signals.
Abstract:
The techniques to detect and mitigate the false reacquisition in a global satellite navigation receiver are disclosed. The false reacquisition due to frequency side-lobes and code autocorrelation secondary lobes are considered for mitigation. A set of two threshold values is used to detect correct reacquisition and reject false reacquisition. While the reacquisition of the signal is straight forward when the correlation is clear with the power above the first threshold, it is not so clear when the power is between two thresholds. So a further search for the maximum power among the retained dwells results in correct reacquisition. The search range depends upon the signal blockage interval and receiver dynamics. The feedback from navigational solution may be used to determine the search range both in frequency and code phase. In the case of frequency side-lobes, which occur only at specified frequency components, these frequencies are tested for maximum power response. The code side-lobes have similar characteristics and can be distinguished by the actual peak.
Abstract:
A method and device to acquire navigational satellite signals combines non-coherent and coherent integrations and can efficiently acquire both strong and weak signals. Successive steps eliminate lower powered and less likely combinations of code offsets and carrier frequencies or dwells of a given satellite signal. Only remaining dwells then are correlated and integrated over larger time duration to obtain the most probable dwell or dwells, which results in reduced computational load. The selection of most likely dwells is based on Parseval's theorem on equivalence of power in time and frequency domains. An optimal estimator algorithm efficiently estimates the probable navigation data bits embedded in the received signal. In case of an ambiguity due to several possible dwells, the steps are repeated with a new set of signal samples.
Abstract:
The present invention provides systems and methods for downloading navigation data to a satellite receiver under weak signal conditions. In an embodiment, the receiver uses a tracking algorithm to estimate the Doppler frequency and rate of change of the Doppler frequency to compensate the phases of the I/Q samples from the received signal to reduce the effect of the Doppler frequency. In an embodiment, differential detection based data bit decoding is provided. In another embodiment, phase compensation based data bit decoding is provided, in which the phase of samples are rotated to compensate for phase error. In an embodiment, a multiple frame strategy is provided to increase signal-to-noise ratio (SNR) and improve sensitivity, in which similar placed samples in consecutive frames are coherently summed over the consecutive frames. In an embodiment, the samples are weighted to reduce the impact of noise in the multiple frame strategy.
Abstract:
The present invention provides systems and methods for navigational signal tracking in low power mode to conserve the power of handheld navigation receivers. In an embodiment, the receiver cycles between sleep and wakeup states. During the sleep state, most of the components of the receiver are powered off to conserve power, and during the wakeup state, the receiver tracks navigational signals. In an embodiment, the duty cycle of the sleep/wakeup states depends on the receiver dynamic state, e.g., whether the receiver is accelerating. In another embodiment, during the wakeup state, the receiver selects a tracking mode based on the signal strength. Under weak signal conditions, a tracking mode using a long integration to track the satellite signal is disclosed. In one embodiment, a tracking mode tracks the navigation signal by performing data aided integration using known or predicted data bits, such as the TLM and HOW words.
Abstract:
The present invention provides GPS receivers capable of tracking very weak GPS signals particularly in an indoor environment without assistance from an external server or a network. In a preferred embodiment, a GPS receiver initially acquires and locks onto GPS satellite signals to compute receiver position outdoors. The GPS receiver then tracks at least one satellite signal indoors to maintain acquisition parameters for quick acquisition of GPS signals. To save power, the receiver automatically goes to the sleep state and periodically wakes up, i.e., powers up, to maintain the at least one satellite signal tracking. During the wakeup state, the receiver collects ephemeris data from the at least one satellite signal when the ephemeris data needs to be updated for quick acquisition of GPS signals.
Abstract:
The present invention provides GPS receivers with clock calibration for fast reacquisition of GPS signals after waking up from a sleep state or coming out of signal blockage. In a preferred embodiment, a GPS receiver comprises a local clock based on an oscillator, e.g., crystal oscillator. The GPS receiver calculates a clock calibration value based on a computed oscillator count for the period during which the GPS receiver is in the sleep state or the signal is blocked. This clock calibration value is used to calibrate the local clock after the GPS receiver wakes up or comes out of signal blockage for fast reacquisition of GPS signals.
Abstract:
The present invention provides a new baseband integrated circuit (IC) architecture for direct sequence spread spectrum (DSSS) communication receivers. The baseband IC has a single set of baseband correlators serving all channels in succession. No complex parallel channel hardware is required. A single on-chip code Numerically Controlled Oscillator (NCO) drives a pseudorandom number (PN) sequence generator, generates all code sampling frequencies, and is capable of self-correct through feedback from an off-chip processor. A carrier NCO generates corrected local frequencies. These on-chip NCOs generate all the necessary clocks. This architecture advantageously reduces the total hardware necessary for the receiver and the baseband IC thus can be realized with a minimal number of gate count. The invention can accommodate any number of channels in a navigational system such as the Global Positioning System (GPS), GLONASS, WAAS, LAAS, etc. The number of channels can be increased by increasing the circuit clock speed.
Abstract:
Provided herein are systems and methods for achieving long coherent integration in a navigational receiver to improve the sensitivity of the receiver and enable the receiver to acquire, reacquire and track signals under very weak signal conditions. In an embodiment, phase compensation is computed based on estimated Doppler frequency, rate of change of the Doppler frequency with time, and second order rate of change of the Doppler frequency. The Doppler frequency may be computed from an orbital model or ephemeris. This phase compensation is used to compensate samples of the input signal for changes in the phase due to the Doppler frequency. Frequency components of the phase-compensated samples are then computed using a frequency analysis such as a Fast Fourier Transform (FFT). The maximum frequency component is taken as an error frequency and used to compensate the samples of the input signal for residual frequency error.