Abstract:
A server establishes a secure session with a client device where a private key used in the handshake when establishing the secure session is stored in a different server. During the handshake procedure, the server proxies messages to/from the different server including a set of signed cryptographic parameters signed using the private key on the different server. The different server generates the master secret, and generates and transmits the session keys to the server that are to be used in the secure session for encrypting and decrypting communication between the client device and the server.
Abstract:
A server establishes a secure session with a client device where a private key used in the handshake when establishing the secure session is stored in a different server. During the handshake procedure, the server receives a premaster secret that has been encrypted using a public key bound with a domain for which the client device is attempting to establish a secure session with. The server transmits the encrypted premaster secret to the different server for decryption along with other information necessary to compute a master secret. The different server decrypts the encrypted premaster secret, generates the master secret, and transmits the master secret to the server. The server receives the master secret and continues with the handshake procedure including generating one or more session keys that are used in the secure session for encrypting and decrypting communication between the client device and the server.
Abstract:
A request is received at a proxy server for a web page, the request originating from a client network application of a client device. The requested web page includes multiple references to multiple images. The proxy server retrieves the requested web page. The proxy server modifies code of the retrieved web page such that the client network application will not, for each one of images, request that image until the location where that image is to be displayed is within a viewport of the client network application or within a defined distance from the viewport of the client network application. The proxy server transmits the modified web page to the client device.
Abstract:
A server establishes a secure session with a client device where a private key used in the handshake when establishing the secure session is stored in a different server. During the handshake procedure, the server receives a premaster secret that has been encrypted using a public key bound with a domain for which the client device is attempting to establish a secure session. The server transmits the encrypted premaster secret to the different server for decryption along with other information necessary to compute a master secret and session keys for the secure session. The different server decrypts the encrypted premaster secret, generates the master secret, and generates session keys that are used in the secure session for encrypting and decrypting communication between the client device and the server and transmits those session keys to that server.
Abstract:
A server establishes a secure session with a client device where a private key used in the handshake is stored in a different server. An encrypted connection is established between the first server and the second server. A message is received from the client device that initiates a procedure to establish the secure session between the client device and the first server. As part of this procedure, the first server transmits over the encrypted connection a request to the second server to use the private key. The first server receives, over the encrypted connection, a response to the request that includes a result of the use of the private key. The first server uses the result during the procedure to establish the secure session.
Abstract:
An authoritative DNS server receives DNS requests for domains. The authoritative DNS server responds to the requests with address records that include IP addresses that are selected from a larger pool of IP addresses, where a first response to a DNS query for a domain can include IP addresses different from IP addresses included in a second response for the same domain. Also, the same IP addresses may be returned for a first domain and a different, second domain. The authoritative DNS server may randomly select the IP addresses to include in responses to the requests regardless of the domain.
Abstract:
A first server establishes a secure session with a client device where a private key used in the handshake when establishing the secure session is stored in a different, second, server. The first server transmits messages between the client device and the second server where the second server has access to a private key that is not available on the first server. The first server receives from the second server a set of session key(s) used in the secure session for encrypting/decrypting communication between the client device and the first server. The session key(s) are generated using a master secret that is generated using a premaster secret generated using Diffie-Hellman public values selected by the client device and the second server. The first server uses the session key(s) to encrypt/decrypt communication with the client device.
Abstract:
A server establishes a secure session with a client device where a private key used in the handshake when establishing the secure session is stored in a different server. During the handshake procedure, the server receives a premaster secret that has been encrypted using a public key bound with a domain for which the client device is attempting to establish a secure session with. The server transmits the encrypted premaster secret to the different server for decryption along with other information necessary to compute a master secret. The different server decrypts the encrypted premaster secret, generates the master secret, and transmits the master secret to the server. The server receives the master secret and continues with the handshake procedure including generating one or more session keys that are used in the secure session for encrypting and decrypting communication between the client device and the server.
Abstract:
A server establishes a secure session with a client device where a private key used in the handshake when establishing the secure session is stored in a different server. During the handshake procedure, the server proxies messages to/from the different server including a set of signed cryptographic parameters signed using the private key on the different server. The different server generates the master secret, and generates and transmits the session keys to the server that are to be used in the secure session for encrypting and decrypting communication between the client device and the server.
Abstract:
A cloud-based proxy service identifies a denial-of-service (DoS) attack including determining that there is a potential DoS attack being directed to an IP address of the cloud-based proxy service; and responsive to determining that there are a plurality of domains that resolve to that IP address, identifying the one of the plurality of domains that is the target of the DoS attack. The domain that is under attack is identified by scattering the plurality of domains to resolve to different IP addresses, where a result of the scattering is that each of those domains resolves to a different IP address, and identifying one of those plurality of domains as the target of the DoS attack by determining that there is an abnormally high amount of traffic being directed to the IP address in which that domain resolves.