REINFORCEMENT LEARNING WITH AUXILIARY TASKS
    21.
    发明公开

    公开(公告)号:US20240144015A1

    公开(公告)日:2024-05-02

    申请号:US18386954

    申请日:2023-11-03

    CPC classification number: G06N3/084 G06N3/006 G06N3/044 G06N3/045 G06N20/00

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. The method includes: training an action selection policy neural network, and during the training of the action selection neural network, training one or more auxiliary control neural networks and a reward prediction neural network. Each of the auxiliary control neural networks is configured to receive a respective intermediate output generated by the action selection policy neural network and generate a policy output for a corresponding auxiliary control task. The reward prediction neural network is configured to receive one or more intermediate outputs generated by the action selection policy neural network and generate a corresponding predicted reward. Training each of the auxiliary control neural networks and the reward prediction neural network comprises adjusting values of the respective auxiliary control parameters, reward prediction parameters, and the action selection policy network parameters.

    REINFORCEMENT LEARNING WITH AUXILIARY TASKS

    公开(公告)号:US20210182688A1

    公开(公告)日:2021-06-17

    申请号:US17183618

    申请日:2021-02-24

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. The method includes: training an action selection policy neural network, and during the training of the action selection neural network, training one or more auxiliary control neural networks and a reward prediction neural network. Each of the auxiliary control neural networks is configured to receive a respective intermediate output generated by the action selection policy neural network and generate a policy output for a corresponding auxiliary control task. The reward prediction neural network is configured to receive one or more intermediate outputs generated by the action selection policy neural network and generate a corresponding predicted reward. Training each of the auxiliary control neural networks and the reward prediction neural network comprises adjusting values of the respective auxiliary control parameters, reward prediction parameters, and the action selection policy network parameters.

    Reinforcement learning with auxiliary tasks

    公开(公告)号:US10956820B2

    公开(公告)日:2021-03-23

    申请号:US16403385

    申请日:2019-05-03

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a reinforcement learning system. The method includes: training an action selection policy neural network, and during the training of the action selection neural network, training one or more auxiliary control neural networks and a reward prediction neural network. Each of the auxiliary control neural networks is configured to receive a respective intermediate output generated by the action selection policy neural network and generate a policy output for a corresponding auxiliary control task. The reward prediction neural network is configured to receive one or more intermediate outputs generated by the action selection policy neural network and generate a corresponding predicted reward. Training each of the auxiliary control neural networks and the reward prediction neural network comprises adjusting values of the respective auxiliary control parameters, reward prediction parameters, and the action selection policy network parameters.

    ENVIRONMENT PREDICTION USING REINFORCEMENT LEARNING

    公开(公告)号:US20200327399A1

    公开(公告)日:2020-10-15

    申请号:US16911992

    申请日:2020-06-25

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for prediction of an outcome related to an environment. In one aspect, a system comprises a state representation neural network that is configured to: receive an observation characterizing a state of an environment being interacted with by an agent and process the observation to generate an internal state representation of the environment state; a prediction neural network that is configured to receive a current internal state representation of a current environment state and process the current internal state representation to generate a predicted subsequent state representation of a subsequent state of the environment and a predicted reward for the subsequent state; and a value prediction neural network that is configured to receive a current internal state representation of a current environment state and process the current internal state representation to generate a value prediction.

    Environment prediction using reinforcement learning

    公开(公告)号:US10733501B2

    公开(公告)日:2020-08-04

    申请号:US16403314

    申请日:2019-05-03

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for prediction of an outcome related to an environment. In one aspect, a system comprises a state representation neural network that is configured to: receive an observation characterizing a state of an environment being interacted with by an agent and process the observation to generate an internal state representation of the environment state; a prediction neural network that is configured to receive a current internal state representation of a current environment state and process the current internal state representation to generate a predicted subsequent state representation of a subsequent state of the environment and a predicted reward for the subsequent state; and a value prediction neural network that is configured to receive a current internal state representation of a current environment state and process the current internal state representation to generate a value prediction.

    CONTINUAL REINFORCEMENT LEARNING WITH A MULTI-TASK AGENT

    公开(公告)号:US20190244099A1

    公开(公告)日:2019-08-08

    申请号:US16268414

    申请日:2019-02-05

    CPC classification number: G06N3/08 G05D1/0088 G06N3/04

    Abstract: A method of training an action selection neural network for controlling an agent interacting with an environment to perform different tasks is described. The method includes obtaining a first trajectory of transitions generated while the agent was performing an episode of the first task from multiple tasks; and training the action selection neural network on the first trajectory to adjust the control policies for the multiple tasks. The training includes, for each transition in the first trajectory: generating respective policy outputs for the initial observation in the transition for each task in a subset of tasks that includes the first task and one other task; generating respective target policy outputs for each task using the reward in the transition, and determining an update to the current parameter values based on, for each task, a gradient of a loss between the policy output and the target policy output for the task.

    Training neural networks using a prioritized experience memory

    公开(公告)号:US10282662B2

    公开(公告)日:2019-05-07

    申请号:US15977891

    申请日:2018-05-11

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a neural network used to select actions performed by a reinforcement learning agent interacting with an environment. In one aspect, a method includes maintaining a replay memory, where the replay memory stores pieces of experience data generated as a result of the reinforcement learning agent interacting with the environment. Each piece of experience data is associated with a respective expected learning progress measure that is a measure of an expected amount of progress made in the training of the neural network if the neural network is trained on the piece of experience data. The method further includes selecting a piece of experience data from the replay memory by prioritizing for selection pieces of experience data having relatively higher expected learning progress measures and training the neural network on the selected piece of experience data.

Patent Agency Ranking