Abstract:
Disclosed herein is a super-resolution lithography apparatus and method based on a multiple light exposure method. The super-resolution lithography apparatus comprises a photographic medium having energy levels of a first ground state, a second ground state, a first excited state, a second excited state and a quenching state; a first light source inducing energy level transition between the first ground state and the first excited state of the photographic medium; a second light source inducing energy level transition between the second ground state and the first excited state of the photographic medium; and a third light source inducing energy level transition between the second ground state and the second excited state of the photographic medium. Accordingly, the resolution of lithography can be improved simply by using a photographic medium having a simple structure and conventional laser beams and increasing the number of exposure steps. Furthermore, a multiple photon absorber that is difficult to obtain, a medium having a complicated energy level and a high-efficiency quantum optical light are unnecessary, and thus economic efficiency is improved.
Abstract:
After forming a signal line including aluminum, an upper layer of an oxide layer including aluminum that covers the signal line is formed in the same chamber and by using the same sputtering target as the signal line, or a buffer layer of an oxide layer including aluminum is formed in a contact hole exposing the signal line during the formation of the contact hole. Accordingly, the contact characteristic between an upper layer including indium tin oxide (“ITO”) or indium zinc oxide (“IZO”) and the signal line may be improved to enhance the adhesion therebetween while not increasing the production cost of the thin film transistor (“TFT”) array panel.
Abstract:
An ice detecting apparatus for a refrigerator comprising and ice maker, a storage container to collect ice from the ice maker, and an ice detecting sensor provided at the ice maker including a transmitting unit to transmit one or more pulses, and a receiving unit to detect the pulses transmitted from the transmitting unit. A controller to determine whether the storage container is full or nearly full based on the pulses detected by the receiving unit among one or more pulses transmitted by the transmitting unit.
Abstract:
An ice detecting apparatus for an ice maker provided in a refrigerator includes an ice maker, and an ice detecting sensor attached to the ice maker and detecting an amount of ice collected in an ice container. The ice detecting sensor includes at least one optical transmitter or emitter provided on one side of the ice maker and at least one receiver at another side of the ice maker. The optical transmitter and receiver are separated by a prescribed distance and, at least one heater is provided to generate heat to be transferred to at least one of the optical transmitter or receiver.