Abstract:
An embodiment of an apparatus for generating audio subband values in audio subband channels has an analysis windower for windowing a frame of time-domain audio input samples being in a time sequence extending from an early sample to a later sample using an analysis window function having a sequence of window coefficients to obtain windowed samples. The analysis window function has a first group of window coefficients and a second group of window coefficients. The first group of window coefficients is used for windowing later time-domain samples and the second group of window coefficients is used for windowing an earlier time-domain samples. The apparatus further has a calculator for calculating the audio subband values using the windowed samples.
Abstract:
An embodiment of an apparatus for generating audio subband values in audio subband channels includes an analysis windower for windowing a frame of time-domain audio input samples being in a time sequence extending from an early sample to a later sample using an analysis window function including a sequence of window coefficients to obtain windowed samples. The analysis window function includes a first number of window coefficients derived from a larger window function including a sequence of a larger second number of window coefficients, wherein the window coefficients of the window function are derived by an interpolation of window coefficients of the larger window function. The apparatus further includes a calculator for calculating the audio subband values using the windowed samples.
Abstract:
An audio encoder has a first information sink oriented encoding branch such as a spectral domain encoding branch, a second information source or SNR oriented encoding branch such as an LPC-domain encoding branch, and a switch for switching between the first and second encoding branches, the second encoding branch having a converter into a specific domain different from the spectral domain such as an LPC analysis stage generating an excitation signal, and the second encoding branch having a specific domain coding branch such as LPC domain processing branch, and a specific spectral domain coding branch such as LPC spectral domain processing branch, and an additional switch for switching between the specific domain coding branch and the specific spectral domain coding branch. An audio decoder has a first domain decoder, a second domain decoder, and a third domain decoder as well as two cascaded switches for switching between the decoders.
Abstract:
An apparatus for processing an audio signal includes a configurable first audio signal processor for processing the audio signal in accordance with different configuration settings to obtain a processed audio signal, wherein the apparatus is adapted so that different configuration settings result in different sampling rates of the processed audio signal. The apparatus furthermore includes n analysis filter bank having a first number of analysis filter bank channels, a synthesis filter bank having a second number of synthesis filter bank channels, a second audio processor being adapted to receive and process an audio signal having a predetermined sampling rate, and a controller for controlling the first number of analysis filter bank channels or the second number of synthesis filter bank channels in accordance with a configuration setting.
Abstract:
An apparatus for decoding data segments representing a time-domain data stream, a data segment being encoded in the time domain or in the frequency domain, a data segment being encoded in the frequency domain having successive blocks of data representing successive and overlapping blocks of time-domain data samples. The apparatus includes a time-domain decoder for decoding a data segment being encoded in the time domain and a processor for processing the data segment being encoded in the frequency domain and output data of the time-domain decoder to obtain overlapping time-domain data blocks. The apparatus further includes an overlap/add-combiner for combining the overlapping time-domain data blocks to obtain a decoded data segment of the time-domain data stream.
Abstract:
An approach is described that obtains spectrum coefficients for a replacement frame of an audio signal. A tonal component of a spectrum of an audio signal is detected based on a peak that exists in the spectra of frames preceding a replacement frame. For the tonal component of the spectrum a spectrum coefficients for the peak and its surrounding in the spectrum of the replacement frame is predicted, and for the non-tonal component of the spectrum a non-predicted spectrum coefficient for the replacement frame or a corresponding spectrum coefficient of a frame preceding the replacement frame is used.
Abstract:
An apparatus for generating a decoded two-channel signal includes: an audio processor for decoding an encoded two-channel signal to obtain a first set of first spectral portions; a parametric decoder for providing parametric data for a second set of second spectral portions and a two-channel identification identifying either a first or a second different two-channel representation for the second spectral portions; and a frequency regenerator for regenerating a second spectral portion depending on a first spectral portion of the first set of first spectral portions, the parametric data for the second portion and the two-channel identification for the second portion.
Abstract:
A schematic block diagram of an audio encoder for encoding a multichannel audio signal is shown. The audio encoder includes a linear prediction domain encoder, a frequency domain encoder, and a controller for switching between the linear prediction domain encoder and the frequency domain encoder. The controller is configured such that a portion of the multichannel signal is represented either by an encoded frame of the linear prediction domain encoder or by an encoded frame of the frequency domain encoder. The linear prediction domain encoder includes a downmixer for downmixing the multichannel signal to obtain a downmixed signal. The linear prediction domain encoder further includes a linear prediction domain core encoder for encoding the downmix signal and furthermore, the linear prediction domain encoder includes a first joint multichannel encoder for generating first multichannel information from the multichannel signal.
Abstract:
An approach is described that obtains spectrum coefficients for a replacement frame of an audio signal. A tonal component of a spectrum of an audio signal is detected based on a peak that exists in the spectra of frames preceding a replacement frame. For the tonal component of the spectrum a spectrum coefficients for the peak and its surrounding in the spectrum of the replacement frame is predicted, and for the non-tonal component of the spectrum a non-predicted spectrum coefficient for the replacement frame or a corresponding spectrum coefficient of a frame preceding the replacement frame is used.
Abstract:
A method and an apparatus for synthesizing an audio signal are described. A spectral tilt is applied to the code of a codebook used for synthesizing a current frame of the audio signal. The spectral tilt is based on the spectral tilt of the current frame of the audio signal. Further, an audio decoder operating in accordance with the inventive approach is described.