Abstract:
A method for forming a stabilized bed of magneto-caloric material is provided. The method includes aligning magneto-caloric particles within the casing while a magnetic field is applied to the magneto-caloric particles and then fixing positions of the magneto-caloric particles within the casing. A related stabilized bed of magneto-caloric material is also provided.
Abstract:
A heat pump system that uses variable magnetization to control the amount of MCM subjected to a magnetic field is provided. More particularly, the amount of MCM subjected to a magnetic field can be selected based on the amount of refrigeration needed. As such, the heat pump system can be adjusted based on e.g., changes in ambient conditions, and the energy used in operating such a heat pump system can be conserved so as to increase energy efficiency of the system.
Abstract:
A tine assembly for a dishwasher appliance is provided. The tine assembly includes a plurality of segmented tines. Each segmented tine of the plurality of segmented tines includes a plurality of tine segments. Each tine segment of the plurality of tine segments is pivotally or rotatably mounted to a respective adjacent tine segment of the plurality of tine segments such that the segmented tines of the plurality of segmented tines are compliant. A related dishwasher appliance is also provided.
Abstract:
A heat pump system is provided that uses MCM to provide for heating or cooling. The heat pump can include one or more stages of MCM, each stage having an original peak Curie temperature. In the event the magneto caloric response of one or more stages of MCM degrades, the present invention provides for operating the heat pump system so that one or more stages of MCM are held at a different temperature from the original peak Curie temperature so as to restore the MCM to its original peak Curie temperature or to within a certain interval thereof. The present invention can be used with e.g., an appliance, air-conditioning systems (heating or cooling), or other devices using such a heat pump system as well.
Abstract:
A heat pump system is provided that uses MCM for heating or cooling. A magnetic field of decreasing flux intensity is used to decrease power consumption and reduce e.g., the size of one or more magnetic devices associated with creating the magnetic field. In one exemplary embodiment, the heat pump is constructed from a continuously rotating regenerator where MCM is cycled in and out of a magnetic field in a continuous manner and a heat transfer fluid is circulated therethrough to provide for heat transfer in a cyclic manner. The magneto caloric material may include stages having different Curie temperature ranges. An appliance using such a heat pump system is also provided. The heat pump may also be used in other applications for heating, cooling, or both.
Abstract:
The present invention provides a regenerator having magneto caloric material (MCM) configured with flow channels for the passage of a heat transfer fluid through the MCM. The flow channels are created by positioning elongate elements of the MCM adjacent to each other. The elongate elements provide surface area necessary for heat transfer while the flow channels reduce the pressure drop incurred by the heat transfer fluid as it flows through the regenerator. The elongate elements can also be configured with MCM having different Curie temperatures (e.g., different Curie temperature ranges) in order to accommodate a variety of ambient conditions in which the regenerator may be used.