Abstract:
A turbine nozzle includes an airfoil that extends in span from an inner band to an outer band where the inner band and the outer band define inner and outer flow boundaries of the turbine nozzle. At least one of the inner band and the outer band defines a plurality of cooling channels formed and a coolant discharge plenum beneath a gas side surface of the corresponding inner or outer band that is in fluid communication with the cooling channels. The coolant discharge plenum is formed within the inner band or the outer band downstream from the cooling channels and upstream from a plurality of coolant discharge ports.
Abstract:
A turbine bucket includes a leading edge, a trailing edge, a root portion, and a tip portion. The turbine bucket also includes one or more cooling passages extending through a body of the turbine bucket from an inlet to an outlet. The cooling passages are configured to route a cooling flow of fluid through the turbine bucket. The turbine bucket further includes a plenum defined within the tip portion to receive the fluid from the outlet of the cooling passages for expulsion of the cooling flow of fluid into a main flow path via at least one outlet hole proximate the trailing edge of the turbine bucket.
Abstract:
An airfoil includes an outer surface having a leading edge, a trailing edge downstream from the leading edge, and a convex surface between the leading and trailing edges. A cavity is inside the outer surface, and a platform is connected to the outer surface and defines a top surface around at least a portion of the outer surface. A first plurality of trenches is beneath the top surface of the platform upstream from the leading edge, wherein each trench in the first plurality of trenches is in fluid communication with the cavity inside the outer surface. A first plurality of cooling passages provide fluid communication from the first plurality of trenches through the top surface of the platform.
Abstract:
A system to improve gas turbine output and extend the life of hot gas path components includes a subsystem for estimating an amount of water or steam to be added to the flow of air to achieve the desired hot gas path temperature. The system includes a water or steam injection component adapted to inject the amount of water or steam to the flow of air to generate a flow of humid air and an injection subsystem adapted to inject the flow of humid air into a nozzle at the turbine stage are also included. The system includes a temperature sensor disposed at a turbine stage, and a subsystem for determining a desired hot gas path temperature at the turbine stage. An extraction conduit is coupled to a compressor stage and is adapted to extract a flow of air.
Abstract:
A variable inlet guide vane arrangement for a compressor includes a case defining an inlet of the compressor; at least one vane support coaxially disposed within the case; a plurality of vanes circumferentially disposed around the circumference of the case, each vane being pivotally mounted between the case and the at least one vane support; an actuator mechanism configured to pivot at least some of the plurality of vanes in an asymmetrical pattern around the circumference of the case. A method of controlling a variable inlet guide vane arrangement for a compressor includes pivoting at least some of the plurality of vanes in an asymmetrical pattern around the circumference of the case.