Abstract:
A monitoring system for determining component wear is provided. The monitoring system includes a memory device configured to store a reference model of a component and a component wear monitoring (CWM) device configured to receive a component image of a first component being inspected, detect a plurality of manmade structural features in the received component image, adjust the component image to mask out at least some of the plurality of manmade structural features from the received component image, compare the adjusted component image with the reference model to determine one or more potential defect areas in the first component, analyze each of the one or more defect areas to determine a state of the potential defect areas, and output the state of the one or more potential defect areas to a user.
Abstract:
A computationally efficient dictionary learning-based term is employed in an iterative reconstruction framework to keep more spatial information than two-dimensional dictionary learning and require less computational cost than three-dimensional dictionary learning. In one such implementation, a non-local regularization algorithm is employed in an MBIR context (such as in a low dose CT image reconstruction context) based on dictionary learning in which dictionaries from different directions (e.g., x,y-plane, y,z-plane, x,z-plane) are employed and the sparse coefficients calculated accordingly. In this manner, spatial information from all three directions is retained and computational cost is constrained.
Abstract:
Improved systems and methods for the analysis of digital images are provided. More particularly, the present disclosure provides for improved systems and methods for the analysis of digital images of biological tissue samples. Exemplary embodiments provide for: i) segmenting, ii) grouping, and iii) quantifying molecular protein profiles of individual cells in terms of sub cellular compartments (nuclei, membrane, and cytoplasm). The systems and methods of the present disclosure advantageously perform tissue segmentation at the sub-cellular level to facilitate analyzing, grouping and quantifying protein expression profiles of tissue in tissue sections globally and/or locally. Performing local-global tissue analysis and protein quantification advantageously enables correlation of spatial and molecular configuration of cells with molecular information of different types of cancer.
Abstract:
An approach for seismic data analysis is provided. In accordance with embodiments of this approach, parallel regions within a volume of seismic data are modeled. Residual regions within the volumetric data set are identified, where the residual regions comprise those regions not modeled as parallel regions. The residual regions or a graphic derived from the residual regions are displayed for review.