Neural architecture search for convolutional neural networks

    公开(公告)号:US10521729B2

    公开(公告)日:2019-12-31

    申请号:US16040067

    申请日:2018-07-19

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining neural network architectures. One of the methods includes generating, using a controller neural network having controller parameters and in accordance with current values of the controller parameters, a batch of output sequences. The method includes, for each output sequence in the batch: generating an instance of a child convolutional neural network (CNN) that includes multiple instances of a first convolutional cell having an architecture defined by the output sequence; training the instance of the child CNN to perform an image processing task; and evaluating a performance of the trained instance of the child CNN on the task to determine a performance metric for the trained instance of the child CNN; and using the performance metrics for the trained instances of the child CNN to adjust current values of the controller parameters of the controller neural network.

    NEURAL ARCHITECTURE SEARCH FOR CONVOLUTIONAL NEURAL NETWORKS

    公开(公告)号:US20190026639A1

    公开(公告)日:2019-01-24

    申请号:US16040067

    申请日:2018-07-19

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining neural network architectures. One of the methods includes generating, using a controller neural network having controller parameters and in accordance with current values of the controller parameters, a batch of output sequences. The method includes, for each output sequence in the batch: generating an instance of a child convolutional neural network (CNN) that includes multiple instances of a first convolutional cell having an architecture defined by the output sequence; training the instance of the child CNN to perform an image processing task; and evaluating a performance of the trained instance of the child CNN on the task to determine a performance metric for the trained instance of the child CNN; and using the performance metrics for the trained instances of the child CNN to adjust current values of the controller parameters of the controller neural network.

    Neural architecture search for convolutional neural networks

    公开(公告)号:US11651259B2

    公开(公告)日:2023-05-16

    申请号:US16674801

    申请日:2019-11-05

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining neural network architectures. One of the methods includes generating, using a controller neural network having controller parameters and in accordance with current values of the controller parameters, a batch of output sequences. The method includes, for each output sequence in the batch: generating an instance of a child convolutional neural network (CNN) that includes multiple instances of a first convolutional cell having an architecture defined by the output sequence; training the instance of the child CNN to perform an image processing task; and evaluating a performance of the trained instance of the child CNN on the task to determine a performance metric for the trained instance of the child CNN; and using the performance metrics for the trained instances of the child CNN to adjust current values of the controller parameters of the controller neural network.

    FULLY ATTENTIONAL COMPUTER VISION
    25.
    发明申请

    公开(公告)号:US20220215654A1

    公开(公告)日:2022-07-07

    申请号:US17606976

    申请日:2020-05-22

    Applicant: Google LLC

    Abstract: A system implemented as computer programs on one or more computers in one or more locations that implements a computer vision model is described. The computer vision model includes a positional local self-attention layer that is configured to receive an input feature map and to generate an output feature map. For each input element in the input feature map, the positional local self-attention layer generates a respective output element for the output feature map by generating a memory block including neighboring input elements around the input element, generates a query vector using the input element and a query weight matrix, for each neighboring element in the memory block, performs positional local self-attention operations to generate a temporary output element, and generates the respective output element by summing temporary output elements of the neighboring elements in the memory block.

    NEURAL ARCHITECTURE SEARCH FOR DENSE IMAGE PREDICTION TASKS

    公开(公告)号:US20210081796A1

    公开(公告)日:2021-03-18

    申请号:US17107745

    申请日:2020-11-30

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining neural network architectures. One of the methods includes obtaining training data for a dense image prediction task; and determining an architecture for a neural network configured to perform the dense image prediction task, comprising: searching a space of candidate architectures to identify one or more best performing architectures using the training data, wherein each candidate architecture in the space of candidate architectures comprises (i) the same first neural network backbone that is configured to receive an input image and to process the input image to generate a plurality of feature maps and (ii) a different dense prediction cell configured to process the plurality of feature maps and to generate an output for the dense image prediction task; and determining the architecture for the neural network based on the best performing candidate architectures.

    Neural architecture search for dense image prediction tasks

    公开(公告)号:US10853726B2

    公开(公告)日:2020-12-01

    申请号:US16425900

    申请日:2019-05-29

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for determining neural network architectures. One of the methods includes obtaining training data for a dense image prediction task; and determining an architecture for a neural network configured to perform the dense image prediction task, comprising: searching a space of candidate architectures to identify one or more best performing architectures using the training data, wherein each candidate architecture in the space of candidate architectures comprises (i) the same first neural network backbone that is configured to receive an input image and to process the input image to generate a plurality of feature maps and (ii) a different dense prediction cell configured to process the plurality of feature maps and to generate an output for the dense image prediction task; and determining the architecture for the neural network based on the best performing candidate architectures.

    STYLIZING INPUT IMAGES
    28.
    发明申请

    公开(公告)号:US20190236814A1

    公开(公告)日:2019-08-01

    申请号:US16380010

    申请日:2019-04-10

    Applicant: Google LLC

    Abstract: A method for applying a style to an input image to generate a stylized image. The method includes maintaining data specifying respective parameter values for each image style in a set of image styles, receiving an input including an input image and data identifying an input style to be applied to the input image to generate a stylized image that is in the input style, determining, from the maintained data, parameter values for the input style, and generating the stylized image by processing the input image using a style transfer neural network that is configured to process the input image to generate the stylized image.

    Classifying images
    29.
    发明授权

    公开(公告)号:US10127475B1

    公开(公告)日:2018-11-13

    申请号:US15273572

    申请日:2016-09-22

    Applicant: Google LLC

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for classifying images. One of the methods includes obtaining data that associates each of a plurality of object category labels with a respective high-dimensional representation of the object category label, wherein the high-dimensional representation of the object category label is a numeric representation of the object category label in a high-dimensional space; receiving an input image; processing the input image using one or more core layers to generate an alternative representation of the input image; processing the alternative representation of the input image using a transformation layer to determine a high-dimensional representation for the input image; selecting, from the high-dimensional representations associated with the object category labels, a closest high-dimensional representation to the high-dimensional representation for the input image; and selecting the category label associated with the closest high-dimensional representation as a predicted label for the input image.

    CLASSIFYING DATA OBJECTS
    30.
    发明公开

    公开(公告)号:US20240220527A1

    公开(公告)日:2024-07-04

    申请号:US18606458

    申请日:2024-03-15

    Applicant: Google LLC

    CPC classification number: G06F16/35 G06F16/50

    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for classifying data objects. One of the methods includes obtaining data that associates each term in a vocabulary of terms with a respective high-dimensional representation of the term; obtaining classification data for a data object, wherein the classification data includes a respective score for each of a plurality of categories, and wherein each of the categories is associated with a respective category label; computing an aggregate high-dimensional representation for the data object from high-dimensional representations for the category labels associated with the categories and the respective scores; identifying a first term in the vocabulary of terms having a high-dimensional representation that is closest to the aggregate high-dimensional representation; and selecting the first term as a category label for the data object.

Patent Agency Ranking