-
公开(公告)号:US10559300B2
公开(公告)日:2020-02-11
申请号:US16055414
申请日:2018-08-06
Applicant: Google LLC
Inventor: Navdeep Jaitly , Quoc V. Le , Oriol Vinyals , Samuel Bengio , Ilya Sutskever
Abstract: A system can be configured to perform tasks such as converting recorded speech to a sequence of phonemes that represent the speech, converting an input sequence of graphemes into a target sequence of phonemes, translating an input sequence of words in one language into a corresponding sequence of words in another language, or predicting a target sequence of words that follow an input sequence of words in a language (e.g., a language model). In a speech recognizer, the RNN system may be used to convert speech to a target sequence of phonemes in real-time so that a transcription of the speech can be generated and presented to a user, even before the user has completed uttering the entire speech input.
-
公开(公告)号:US20200026765A1
公开(公告)日:2020-01-23
申请号:US16338174
申请日:2017-10-03
Applicant: Google LLC
Inventor: Navdeep Jaitly , Yu Zhang , Quoc V. Le , William Chan
IPC: G06F17/28 , G10L15/16 , G10L15/197 , G06N3/08
Abstract: A computer-implemented method for training a neural network that is configured to generate a score distribution over a set of multiple output positions. The neural network is configured to process a network input to generate a respective score distribution for each of a plurality of output positions including a respective score for each token in a predetermined set of tokens that includes n-grams of multiple different sizes. Example methods described herein provide trained neural networks which produce results with improved accuracy compared to the state of the art, e.g. translations that are more accurate compared to the state of the art, or more accurate speech recognition compared to the state of the art.
-
公开(公告)号:US10510004B2
公开(公告)日:2019-12-17
申请号:US16380101
申请日:2019-04-10
Applicant: Google LLC
Inventor: Navdeep Jaitly , Yu Zhang , William Chan
Abstract: A speech recognition neural network system includes an encoder neural network and a decoder neural network. The encoder neural network generates an encoded sequence from an input acoustic sequence that represents an utterance. The input acoustic sequence includes a respective acoustic feature representation at each of a plurality of input time steps, the encoded sequence includes a respective encoded representation at each of a plurality of time reduced time steps, and the number of time reduced time steps is less than the number of input time steps. The encoder neural network includes a time reduction subnetwork, a convolutional LSTM subnetwork, and a network in network subnetwork. The decoder neural network receives the encoded sequence and processes the encoded sequence to generate, for each position in an output sequence order, a set of substring scores that includes a respective substring score for each substring in a set of substrings.
-
公开(公告)号:US20250078809A1
公开(公告)日:2025-03-06
申请号:US18951397
申请日:2024-11-18
Applicant: Google LLC
Inventor: Samuel Bengio , Yuxuan Wang , Zongheng Yang , Zhifeng Chen , Yonghui Wu , Ioannis Agiomyrgiannakis , Ron J. Weiss , Navdeep Jaitly , Ryan M. Rifkin , Robert Andrew James Clark , Quoc V. Le , Russell J. Ryan , Ying Xiao
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating speech from text. One of the systems includes one or more computers and one or more storage devices storing instructions that when executed by one or more computers cause the one or more computers to implement: a sequence-to-sequence recurrent neural network configured to: receive a sequence of characters in a particular natural language, and process the sequence of characters to generate a spectrogram of a verbal utterance of the sequence of characters in the particular natural language; and a subsystem configured to: receive the sequence of characters in the particular natural language, and provide the sequence of characters as input to the sequence-to-sequence recurrent neural network to obtain as output the spectrogram of the verbal utterance of the sequence of characters in the particular natural language.
-
公开(公告)号:US12106749B2
公开(公告)日:2024-10-01
申请号:US17448119
申请日:2021-09-20
Applicant: Google LLC
Inventor: Rohit Prakash Prabhavalkar , Zhifeng Chen , Bo Li , Chung-cheng Chiu , Kanury Kanishka Rao , Yonghui Wu , Ron J. Weiss , Navdeep Jaitly , Michiel A. u. Bacchiani , Tara N. Sainath , Jan Kazimierz Chorowski , Anjuli Patricia Kannan , Ekaterina Gonina , Patrick An Phu Nguyen
CPC classification number: G10L15/16 , G06N3/08 , G10L15/02 , G10L15/063 , G10L15/22 , G10L25/30 , G10L2015/025 , G10L15/26
Abstract: A method for performing speech recognition using sequence-to-sequence models includes receiving audio data for an utterance and providing features indicative of acoustic characteristics of the utterance as input to an encoder. The method also includes processing an output of the encoder using an attender to generate a context vector, generating speech recognition scores using the context vector and a decoder trained using a training process, and generating a transcription for the utterance using word elements selected based on the speech recognition scores. The transcription is provided as an output of the ASR system.
-
公开(公告)号:US12100391B2
公开(公告)日:2024-09-24
申请号:US17450235
申请日:2021-10-07
Applicant: Google LLC
Inventor: William Chan , Navdeep Jaitly , Quoc V. Le , Oriol Vinyals , Noam M. Shazeer
IPC: G10L15/16 , G06F40/12 , G06F40/197 , G06N3/044 , G06N3/045 , G10L15/183 , G10L15/26 , G10L25/30
CPC classification number: G10L15/16 , G06F40/12 , G06F40/197 , G06N3/044 , G06N3/045 , G10L15/183 , G10L15/26 , G10L25/30
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media for speech recognition. One method includes obtaining an input acoustic sequence, the input acoustic sequence representing an utterance, and the input acoustic sequence comprising a respective acoustic feature representation at each of a first number of time steps; processing the input acoustic sequence using a first neural network to convert the input acoustic sequence into an alternative representation for the input acoustic sequence; processing the alternative representation for the input acoustic sequence using an attention-based Recurrent Neural Network (RNN) to generate, for each position in an output sequence order, a set of substring scores that includes a respective substring score for each substring in a set of substrings; and generating a sequence of substrings that represent a transcription of the utterance.
-
公开(公告)号:US11625572B2
公开(公告)日:2023-04-11
申请号:US16610466
申请日:2018-05-03
Applicant: GOOGLE LLC
Inventor: Chung-Cheng Chiu , Navdeep Jaitly , John Dieterich Lawson , George Jay Tucker
Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating a target sequence from a source sequence. In one aspect, the system includes a recurrent neural network configured to, at each time step, receive an input for the time step and process the input to generate a progress score and a set of output scores; and a subsystem configured to, at each time step, generate the recurrent neural network input and provide the input to the recurrent neural network; determine, from the progress score, whether or not to emit a new output at the time step; and, in response to determining to emit a new output, select an output using the output scores and emit the selected output as the output at a next position in the output order.
-
公开(公告)号:US11145293B2
公开(公告)日:2021-10-12
申请号:US16516390
申请日:2019-07-19
Applicant: Google LLC
Inventor: Rohit Prakash Prabhavalkar , Zhifeng Chen , Bo Li , Chung-Cheng Chiu , Kanury Kanishka Rao , Yonghui Wu , Ron J. Weiss , Navdeep Jaitly , Michiel A. U. Bacchiani , Tara N. Sainath , Jan Kazimierz Chorowski , Anjuli Patricia Kannan , Ekaterina Gonina , Patrick An Phu Nguyen
Abstract: Methods, systems, and apparatus, including computer-readable media, for performing speech recognition using sequence-to-sequence models. An automated speech recognition (ASR) system receives audio data for an utterance and provides features indicative of acoustic characteristics of the utterance as input to an encoder. The system processes an output of the encoder using an attender to generate a context vector and generates speech recognition scores using the context vector and a decoder trained using a training process that selects at least one input to the decoder with a predetermined probability. An input to the decoder during training is selected between input data based on a known value for an element in a training example, and input data based on an output of the decoder for the element in the training example. A transcription is generated for the utterance using word elements selected based on the speech recognition scores. The transcription is provided as an output of the ASR system.
-
公开(公告)号:US10971170B2
公开(公告)日:2021-04-06
申请号:US16058640
申请日:2018-08-08
Applicant: Google LLC
Inventor: Yonghui Wu , Jonathan Shen , Ruoming Pang , Ron J. Weiss , Michael Schuster , Navdeep Jaitly , Zongheng Yang , Zhifeng Chen , Yu Zhang , Yuxuan Wang , Russell John Wyatt Skerry-Ryan , Ryan M. Rifkin , Ioannis Agiomyrgiannakis
Abstract: Methods, systems, and computer program products for generating, from an input character sequence, an output sequence of audio data representing the input character sequence. The output sequence of audio data includes a respective audio output sample for each of a number of time steps. One example method includes, for each of the time steps: generating a mel-frequency spectrogram for the time step by processing a representation of a respective portion of the input character sequence using a decoder neural network; generating a probability distribution over a plurality of possible audio output samples for the time step by processing the mel-frequency spectrogram for the time step using a vocoder neural network; and selecting the audio output sample for the time step from the possible audio output samples in accordance with the probability distribution.
-
公开(公告)号:US10540962B1
公开(公告)日:2020-01-21
申请号:US15970662
申请日:2018-05-03
Applicant: Google LLC
Inventor: William Chan , Navdeep Jaitly , Quoc V. Le , Oriol Vinyals , Noam M. Shazeer
IPC: G10L15/16 , G10L15/26 , G06F17/22 , G10L15/183 , G10L25/30
Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media for speech recognition. One method includes obtaining an input acoustic sequence, the input acoustic sequence representing an utterance, and the input acoustic sequence comprising a respective acoustic feature representation at each of a first number of time steps; processing the input acoustic sequence using a first neural network to convert the input acoustic sequence into an alternative representation for the input acoustic sequence; processing the alternative representation for the input acoustic sequence using an attention-based Recurrent Neural Network (RNN) to generate, for each position in an output sequence order, a set of substring scores that includes a respective substring score for each substring in a set of substrings; and generating a sequence of substrings that represent a transcription of the utterance.
-
-
-
-
-
-
-
-
-