Abstract:
Systems and methods for a cold atom frequency standard are provided herein. In certain embodiments, a cold atom microwave frequency standard includes a vacuum cell, the vacuum cell comprising a central cylinder, the central cylinder being hollow and having a first open end and a second open end; a first end portion joined to the first open end; and a second end portion joined to the second open end, wherein the first end portion, the central cylinder, and the second end portion enclose a hollow volume containing atoms, the first end portion and the second end portion configured to allow light to enter into the hollow volume. The cold atom microwave frequency standard also includes a cylindrically symmetric resonator encircling the central cylinder, wherein the resonator generates a microwave field in the hollow volume at the resonant frequency of the atoms.
Abstract:
A method for reducing or eliminating clock bias in an atomic clock is provided. The method comprises cooling a population of atoms collected in the atomic clock using a laser locked at a predetermined frequency, turning off the laser, performing atomic clock spectroscopy, turning on the laser after the atomic clock spectroscopy, and relocking the frequency of the laser to an external reference cell. The population of atoms that are in each of two ground hyperfine levels is then probed using laser light that is on or near-resonant with a selected atomic transition.
Abstract:
Embodiments described herein provide for a method of launching atoms in an atom interferometer. The method includes determining a direction of the total effective acceleration force on the atoms, controlling a direction of launch of the atoms for measurement in the atom interferometer based on the direction of the total effective acceleration force, and obtaining measurements from the atoms.