Method for neuromorphic implementation of convolutional neural networks

    公开(公告)号:US10387774B1

    公开(公告)日:2019-08-20

    申请号:US14609775

    申请日:2015-01-30

    Abstract: Described is a system for converting convolutional neural networks to spiking neural networks. A convolutional neural network (CNN) is adapted to fit a set of requirements of a spiking neural network (SNN), resulting in an adapted CNN. The adapted CNN is trained to obtain a set of learned weights, and the set of learned weights is then applied to a converted SNN having an architecture similar to the adapted CNN. The converted SNN is then implemented on neuromorphic hardware, resulting in reduced power consumption.

    Object tracking with integrated motion-based object detection (MogS) and enhanced kalman-type filtering
    29.
    发明授权
    Object tracking with integrated motion-based object detection (MogS) and enhanced kalman-type filtering 有权
    具有集成的基于运动的对象检测(MogS)和增强型卡尔曼型滤波的对象跟踪

    公开(公告)号:US09552648B1

    公开(公告)日:2017-01-24

    申请号:US14066600

    申请日:2013-10-29

    CPC classification number: G06T7/277 G06K9/00771 G06K9/3241 G06T7/254

    Abstract: Described is a system for object tracking with integrated motion-based object detection and enhanced Kalman-type filtering. The system detects a location of a moving object in an image frame using an object detection MogS module, thereby generating an object detection. For each image frame in a sequence of image frames, the system predicts the location of the moving object in the next image frame using a Kalman filter prediction module to generate a predicted object location. The predicted object location is refined using a Kalman filter updating module, and the Kalman filter updating module is controlled by a controller module that monitors a similarity between the predicted object location and the moving object's location in a previous image frame. Finally, a set of detected moving object locations in the sequence of image frames is output.

    Abstract translation: 描述了一种用于跟踪集成的基于运动的物体检测和增强型卡尔曼滤波的系统。 该系统使用物体检测MogS模块来检测运动物体在图像帧中的位置,从而产生物体检测。 对于图像帧序列中的每个图像帧,系统使用卡尔曼滤波器预测模块预测运动对象在下一图像帧中的位置,以生成预测对象位置。 使用卡尔曼滤波器更新模块来改进预测对象位置,并且卡尔曼滤波器更新模块由控制器模块来控制,该控制器模块监视预先对象位置与先前图像帧中的移动物体的位置之间的相似度。 最后,输出图像帧序列中的一组检测到的移动物体位置。

    Bio-inspired method of ground object cueing in airborne motion imagery
    30.
    发明授权
    Bio-inspired method of ground object cueing in airborne motion imagery 有权
    空中运动图像中地面物体提示的生物灵感方法

    公开(公告)号:US09008366B1

    公开(公告)日:2015-04-14

    申请号:US13938196

    申请日:2013-07-09

    Abstract: Described is method for object cueing in motion imagery. Key points and features are extracted from motion imagery, and features between consecutive image frames of the motion imagery are compared to identify similar image frames. A candidate set of matching keypoints is generated by matching keypoints between the similar image frames. A ground plane homography model that fits the candidate set of matching keypoints is determined to generate a set of correct matching keypoints. Each image frame of a set of image frames within a selected time window is registered into a reference frame's coordinate system using the homography transformation. A difference image is obtained between the reference frame and each registered image frame, resulting in multiple difference images. The difference images are then accumulated to calculate a detection image which is used for detection of salient regions. Object cues for surveillance use are produced based on the detected salient regions.

    Abstract translation: 描述了运动图像中对象提示的方法。 从运动图像中提取关键点和特征,并比较运动图像的连续图像帧之间的特征,以识别相似的图像帧。 通过匹配相似图像帧之间的关键点来生成候选的匹配关键点集合。 确定适合匹配关键点候选组的地平面单应性模型,以生成一组正确的匹配关键点。 在所选择的时间窗口内的一组图像帧的每个图像帧使用单变图变换登记到参考系的坐标系中。 在参考帧和每个注册的图像帧之间获得差分图像,导致多个差分图像。 然后累积差分图像以计算用于检测突出区域的检测图像。 基于检测到的突出区域产生用于监视使用的对象线索。

Patent Agency Ranking