Abstract:
Embodiments are described of devices and methods for processing a signal using a plurality of vector signal generators (VSGs). A digital signal may be provided to a plurality of signal paths, each of which may process a respective frequency band of the signal, the respective frequency bands having regions of overlap. The gain and phase of each signal path may be adjusted such that continuity of phase and magnitude are preserved through the regions of overlap. The adjustment of gain and phase may be accomplished by a complex multiply with a complex calibration constant. The calibration constant may be determined for each signal path by comparing the gain and phase of one or more calibration tones generated within each region of overlap. Each signal path may comprise a VSG to convert the respective signal to an analog signal, which may be combined to obtain a composite signal.
Abstract:
Embodiments are described of devices and methods for processing a signal using a plurality of vector signal generators (VSGs). A digital signal may be provided to a plurality of signal paths, each of which may process a respective frequency band of the signal, the respective frequency bands having regions of overlap. The gain and phase of each signal path may be adjusted such that continuity of phase and magnitude are preserved through the regions of overlap. The adjustment of gain and phase may be accomplished by a complex multiply with a complex calibration constant. The calibration constant may be determined for each signal path by comparing the gain and phase of one or more calibration tones generated within each region of overlap. Each signal path may comprise a VSG to convert the respective signal to an analog signal, which may be combined to obtain a composite signal.
Abstract:
Systems and methods for measuring transmitter and/or receiver I/Q impairments are disclosed, including iterative methods for measuring transmitter I/Q impairments using shared local oscillators, iterative methods for measuring transmitter I/Q impairments using intentionally-offset local oscillators, and methods for measuring receiver I/Q impairments. Also disclosed are methods for computing I/Q impairments from a sampled complex signal, methods for computing DC properties of a signal path between the transmitter and receiver, and methods for transforming I/Q impairments through a linear system.
Abstract:
Systems and methods for measuring transmitter and/or receiver I/Q impairments are disclosed, including iterative methods for measuring transmitter I/Q impairments using shared local oscillators, iterative methods for measuring transmitter I/Q impairments using intentionally-offset local oscillators, and methods for measuring receiver I/Q impairments. Also disclosed are methods for computing I/Q impairments from a sampled complex signal, methods for computing DC properties of a signal path between the transmitter and receiver, and methods for transforming I/Q impairments through a linear system.
Abstract:
Systems and methods for measuring transmitter and/or receiver I/Q impairments are disclosed, including iterative methods for measuring transmitter I/Q impairments using shared local oscillators, iterative methods for measuring transmitter I/Q impairments using intentionally-offset local oscillators, and methods for measuring receiver I/Q impairments. Also disclosed are methods for computing I/Q impairments from a sampled complex signal, methods for computing DC properties of a signal path between the transmitter and receiver, and methods for transforming I/Q impairments through a linear system.
Abstract:
Systems and methods for measuring transmitter and/or receiver I/Q impairments are disclosed, including iterative methods for measuring transmitter I/Q impairments using shared local oscillators, iterative methods for measuring transmitter I/Q impairments using intentionally-offset local oscillators, and methods for measuring receiver I/Q impairments. Also disclosed are methods for computing I/Q impairments from a sampled complex signal, methods for computing DC properties of a signal path between the transmitter and receiver, and methods for transforming I/Q impairments through a linear system.
Abstract:
Systems and methods for measuring transmitter and/or receiver I/Q impairments are disclosed, including iterative methods for measuring transmitter I/Q impairments using shared local oscillators, iterative methods for measuring transmitter I/Q impairments using intentionally-offset local oscillators, and methods for measuring receiver I/Q impairments. Also disclosed are methods for computing I/Q impairments from a sampled complex signal, methods for computing DC properties of a signal path between the transmitter and receiver, and methods for transforming I/Q impairments through a linear system.
Abstract:
Systems and methods for measuring transmitter and/or receiver I/Q impairments are disclosed, including iterative methods for measuring transmitter I/Q impairments using shared local oscillators, iterative methods for measuring transmitter I/Q impairments using intentionally-offset local oscillators, and methods for measuring receiver I/Q impairments. Also disclosed are methods for computing I/Q impairments from a sampled complex signal, methods for computing DC properties of a signal path between the transmitter and receiver, and methods for transforming I/Q impairments through a linear system.
Abstract:
Methods and systems are disclosed for using a single receiving device, such as a single VSA, to capture and digitize multiple time-domain acquisitions of a repeating signal at different center frequencies, to create a single time-domain waveform having a bandwidth greater than the real-time instantaneous bandwidth of the receiving device. Specifically, one or more signal processing paths may process the multiple digitized acquisitions of the repeating signal, either sequentially or in parallel, such that the processed acquisitions may be aggregated into a representation of one or more repetitions of the repeating signal.
Abstract:
Various embodiments are described of devices and associated methods for processing a signal using a plurality of vector signal analyzers (VSAs). An input signal may be split and provided to a plurality of VSAs, each of which may process a respective frequency band of the signal, where the respective frequency bands have regions of overlap. Each VSA may adjust the gain and phase of its respective signal such that continuity of phase and magnitude is preserved through the regions of overlap. The correction of gain and phase may be accomplished by a complex multiply with a complex calibration constant. A complex calibration constant may be determined for each VSA by comparing the gain and phase of one or more calibration tones generated with each region of overlap, as measured by each of the VSAs.