摘要:
The invention relates to a method of characterizing the RF transmit chain of a magnetic resonance imaging scanner (1) using a local transmit/receive coil system (204; 210), comprising a first local NMR probe and a first local magnetic resonance coil, the first NMR probe being spatially located in immediate neighborhood to the first coil, a local receive coil system (206; 208), comprising a second local NMR probe and a second local magnetic resonance coil, the second NMR probe being spatially located in immediate neighborhood to the second coil, wherein the transmit chain comprises an external MR coil (9; 11; 12; 13), the method comprising: determining with the first magnetic resonance coil, a first MR signal phase evolution of the local RF transmit field generated by MR excitation of the first probe using the first magnetic resonance coil by measuring the RF response of the first probe upon said excitation, determining with the second magnetic resonance coil a second MR signal phase evolution of the local RF transmit field generated by MR excitation of the second probe using the external MR coil (9; 11; 12; 13) by measuring the RF response of the second probe upon said excitation, calculating a phase offset between the first and second MR signal phase evolution.
摘要:
A magnetic resonance imaging system includes a coupling compensation processor (70) for compensating induced magnetic coupling between n individual coil segments (38) of a coil arrangement (36). An adjusted signal determining device (74) determines an adjusted input signal for each of the n individual coil segments of the coil arrangement (36). A transmitting system (54) creates RF pulses in accordance with the determined adjusted input signals and transmits the RF pulses to corresponding coil segments such that the transmitted RF pulses compensate for coupling between the coil segments (38) in the digital domain.
摘要:
A magnetic resonance (MR) system (10) includes radiofrequency (R) transmitters (34) which send RF pulses into an examination region (14) to excite a spin system to be imaged. Coil elements (20, 24, 28) pick up an MR signal, which is demodulated and converted into digital data by RF receivers (36). A plurality of independent parallel processing channels (421, 422, . . . , 42a) is operatively connected to the RF receivers to reconstruct images from the digital data. The parallel processing channels (421, 422, . . . , 42n) include one or more pipeline stages (541, 542, . . . , 54m). Processing channels and pipeline stages include a plurality of processing or reconstruction units (52). Processing tasks are dynamically allocated to these processing or reconstruction units on a per scan basis using a single general strategy for mapping processing tasks to hardware resources. The connections (56) between the processing or reconstruction units (52) are reconfigured using a switching means (60). In this manner, different numbers of coil elements (20, 24, 28) can be connected with matching numbers of processing channels (421, 422, . . . , 42n) to exploit available processing resources optimally.
摘要:
Methods and circuit arrangements for operating a multi-channel transmit/receive antenna device or arrangement, especially for use in a magnetic resonance imaging (MRI) system, are disclosed by which RF amplifiers can be used to their full peak power capability without running the risk that the RF amplifier is damaged due to excessive reflected power at its output. Furthermore by evaluating certain forward and reflected power signals patient safety is achieved with respect to monitoring the limits of the specific absorption rate.
摘要:
A medical imaging system (2) excites multiple nuclei through a single RF amplifier (24). The medical imaging system (2) includes a magnet (10) that generates a main magnetic field (Bo) in an examination region. A gradient coil (14) superimposes magnetic field gradients (G) on the main magnetic field Bo. At least one transmitter (28) generates multi-nuclei excitation pulses associated with at least two different isotopes and two different frequency spectra. The single amplifier (24) sends the multi-nuclei excitation pulses to a RF coil (18, 20) for application to the examination region.
摘要:
Methods and circuit arrangements for operating a multi-channel transmit/receive antenna device or arrangement, comprising a power monitoring unit, especially for use in a magnetic resonance imaging (MRI) system are disclosed. These methods and circuit arrangements are especially provided for ensuring that a specific absorption rate of a patient is not exceeded in the case in which antenna devices or arrangements are used which comprise a plurality of coils and/or coil segments which are independently supplied with RF transmit signals with different amplitudes and/or phases and/or waveforms and/or power levels. A maximum power level is set for at least one of the transmit channels. An alarm state is activated if the supplied power level or the reflected power for that channel exceeds the maximum power level. A maximum sum power level is set for a plurality of transmit channels. An alarm state is activated if the supplied sum power level or the reflected sum power level for the plurality of transmit channels exceeds the maximum sum power level.
摘要:
The invention relates to a method of characterizing the RF transmit chain of a magnetic resonance imaging scanner (1) using a local transmit/receive coil system (204; 210), comprising a first local NMR probe and a first local magnetic resonance coil, the first NMR probe being spatially located in immediate neighborhood to the first coil, a local receive coil system (206; 208), comprising a second local NMR probe and a second local magnetic resonance coil, the second NMR probe being spatially located in immediate neighborhood to the second coil, wherein the transmit chain comprises an external MR coil (9; 11; 12; 13), the method comprising: determining with the first magnetic resonance coil, a first MR signal phase evolution of the local RF transmit field generated by MR excitation of the first probe using the first magnetic resonance coil by measuring the RF response of the first probe upon said excitation, determining with the second magnetic resonance coil a second MR signal phase evolution of the local RF transmit field generated by MR excitation of the second probe using the external MR coil (9; 11; 12; 13) by measuring the RF response of the second probe upon said excitation, calculating a phase offset between the first and second MR signal phase evolution.
摘要:
A magnetic resonance (MR) device for magnetic resonance imaging of a body placed in an examination volume includes a main magnet or generating a stationary and substantially homogeneous main magnetic field in the examination volume, and an RF coil arrangement for generating RF fields in the examination volume and/or for receiving MR signals from the body. In order to provide such an MR device, which is arranged to operate at the resonance (Larmor) frequencies of two or more different nuclear species at the same time, the RF coil arrangement includes independent resonator elements which are adjacently arranged in or near the examination volume. The adjacent resonator elements are alternately tuned to one of two or more different MR resonance frequencies, and each resonator element is associated with a separate signal transmission and/or signal reception channel of the MR device.
摘要:
The invention relates to an MR device (1) for magnetic resonance imaging of a body (14) placed in an examination volume (7), the device (1) comprising a main magnet (2) for generating a stationary and substantially homogeneous main magnetic field in the examination volume (7), and an RF coil arrangement for generating RF fields in the examination volume (7) and/or for receiving MR signals from the body (14). In order to provide such an MR device, which is arranged to operate at the resonance (Larmor) frequencies of two or more different nuclear species at the same time, the invention suggests that the RF coil arrangement comprises a plurality of independent resonator elements (8, 9, 10, 11, 12, 13) which are adjacently arranged in or near the examination volume (7), wherein adjacent resonator elements (8, 9, 10, 11, 12, 13) are alternately tuned to one of two or more different MR resonance frequencies, and wherein each resonator element (8, 9, 10, 11, 12, 13) is associated with a separate signal transmission (16) and/or signal reception channel (17) of the MR device (1)
摘要:
A method and an RF transmit system for generating RF transmit signals for feeding an RF transmitter (14) in the form of, or comprising, one or more antenna device(s), coil(s), coil elements, or coil array(s) is disclosed. Furthermore, a multi-channel RF transmit system for feeding a plurality of such RF transmitters, especially for use as an RF excitation system in a magnetic resonance imaging (MRI) system for exciting nuclear magnetic resonances (NMR) is disclosed. A demand RF transmit signal is compared in the digital domain with an RF transmit signal and digitally corrected with respect to differences or errors between both by means of a complex predistorter (11), an adaption unit (17) and a look-up table unit (18).