Abstract:
A driving device of a driving mass of a gyroscope comprises a differential read amplifier to supply first signals indicating a rate of oscillation of the driving mass; a variable-gain amplifier to supply second signals to drive the driving mass based on said first signals; a voltage elevator providing a power supply signal to the variable-gain amplifier; a controller generating a first control signal to control a gain of the variable-gain amplifier; and a first comparator, coupled to the variable-gain amplifier, generating a second control signal based on a comparison of the first control signal with a threshold, the second control signal controlling at least one among: (i) the variable-gain amplifier in such a way that the gain is increased only during the start-up phase of the gyroscope, and (ii) the voltage elevator in such a way that the power supply signal is increased only during the start-up phase.
Abstract:
A microelectromechanical gyroscope includes a body and a sensing mass, which is movable with a degree of freedom in response to rotations of the body about an axis. A self-test actuator is capacitively coupled to the sensing mass for supplying a self-test signal. The capacitive coupling causes, in response to the self-test signal, electrostatic forces that are able to move the sensing mass in accordance with the degree of freedom at an actuation frequency. A sensing device detects transduction signals indicating displacements of the sensing mass in accordance with the degree of freedom. The sensing device is configured for discriminating, in the transduction signals, spectral components that are correlated to the actuation frequency and indicate the movement of the sensing mass as a result of the self-test signal.
Abstract:
A microelectromechanical gyroscope includes a body and a sensing mass, which is movable with a degree of freedom in response to rotations of the body about an axis. A self-test actuator is capacitively coupled to the sensing mass for supplying a self-test signal. The capacitive coupling causes, in response to the self-test signal, electrostatic forces that are able to move the sensing mass in accordance with the degree of freedom at an actuation frequency. A sensing device detects transduction signals indicating displacements of the sensing mass in accordance with the degree of freedom. The sensing device is configured for discriminating, in the transduction signals, spectral components that are correlated to the actuation frequency and indicate the movement of the sensing mass as a result of the self-test signal.