Abstract:
Embodiments of the invention generally provide an input device that includes a zero-dimensional button that detects whether an input object is proximate to a sensing region. However, different input objects may provide similar responses which may prevent the input device from accurately determining whether the user actually intended to activate the button. In one embodiment, the input device drives a capacitive sensing signal onto a sensor electrode in the capacitive button and measures at least two resulting signals. The input device then derives capacitance values based on the two resulting signals and uses a ratio between the capacitance values to classifying the interaction with the input object. This ratio enables the input device to distinguish between events that have similar capacitive responses and would otherwise be indistinguishable if only one resulting signal were measured.
Abstract:
Disclosed herein are techniques for reducing certain types of noise in capacitive sensing devices. The techniques generally comprise utilizing a low-pass filter in conjunction with a comb filter to “zero out” frequency components associated with certain types of noise. More specifically, the comb filter is configured to zero out noise associated with the fundamental frequency and harmonics of noise that approximates a square wave or an impulse train. The frequency of the sensing signal for capacitive sensing is chosen such that the comb filter does not zero out such frequency.
Abstract:
A processing system comprises a sensor module and a determination module. The sensor module is configured to drive a modulated signal on to a sensor electrode to achieve a target voltage on the sensor electrode during a first portion of a sensing cycle, wherein the modulated signal comprises a first voltage that is beyond a level of the target voltage and which is driven for a first period of time and a second voltage that is at the target voltage and which is driven for a second period of time that follows the first period of time. The determination module is configured to determine an absolute capacitance of the sensor electrode during the first portion of the sensing cycle after driving the second voltage.
Abstract:
Embodiments of the present invention generally provide an input device comprising a display device integrated with a capacitive sensing device. The input device includes a plurality of transmitter electrodes, each transmitter electrode comprising one or more common electrodes configured to be driven for display updating and capacitive sensing, a plurality of near-field receiver electrodes configured to perform capacitive sensing in a near-field sensing region, and a plurality of far-field receiver electrodes configured to perform capacitive sensing in a far-field sensing region. The input device further includes a processing system coupled to the plurality of transmitter electrodes, the plurality of near-field receiver electrodes, and the plurality of far-field receiver electrodes. The processing system is configured to determine a near-field capacitive image based on the first resulting signals received from the near-field receiver electrodes and determine a far-field capacitive image based on the second resulting signals received from the far-field receiver electrodes.