Abstract:
A pixel including a light emitter; a first transistor including first and second electrodes respectively connected to power and the light emitter, the first transistor controlling, driving current a first capacitor between a second and third node; a second transistor between the third node and data line and turned on by a scan signal; a third transistor between a first and second node, and turned on by a control signal; a fourth transistor between power and the third node, and turned on by a emission control signal; a fifth transistor between power and the first electrode, and turned on by the emission control signal; a sixth transistor between the second node and the light emitter, and turned on by another emission control signal; and a second capacitor between power and the first node, wherein the fourth, fifth and sixth transistors turn-on/off at least four times in a non-emission period.
Abstract:
A thin film transistor array panel includes a first insulation substrate, a gate line and a data line which are positioned on the first insulation substrate, are insulated from each other, and cross each other, a thin film transistor connected to the gate line and the data line, an organic film positioned on the thin film transistor, a second passivation layer which is positioned on the organic film and defines a plurality of second openings therein, a common electrode positioned on the second passivation layer, and a pixel electrode positioned in the plurality of second openings, where a thickness of the common electrode is larger than a thickness of the pixel electrode.
Abstract:
A display device includes: pixel circuits arranged in a first direction on each of a first pixel row and a second pixel row; dummy sensor circuits arranged in a predetermined interval between the pixel circuits on the first pixel row; sensor circuits arranged in the interval between the pixel circuits on the second pixel row; light emitting elements disposed on the pixel circuits and connected to each of the pixel circuits; first light receiving elements on at least some of the pixel circuits of the first pixel row and the dummy sensor circuits; and second light receiving elements on at least some of the pixel circuits of the second pixel row and the sensor circuits. One of the sensor circuits is connected to at least two of the first light receiving elements and at least two of the second light receiving elements.
Abstract:
A display device includes a substrate, a first conductive layer disposed on the substrate, a first insulating layer disposed on the first conductive layer, a semiconductor layer disposed on the first insulating layer, a second insulating layer disposed on the semiconductor layer, a second conductive layer disposed on the second insulating layer and overlapping the semiconductor layer, and a third insulating layer disposed on the second conductive layer, wherein the first conductive layer includes two end portions separated by cutting a region of the first conductive layer, and the two end portions of the first conductive layer are electrically connected by a first connecting part.
Abstract:
Embodiments of the present disclosure relates to a display device. According to an embodiment of the disclosure, a display device includes a substrate including a first display region and a second display region surrounding the first display region, a first pixel disposed in the first display region, a second pixel disposed in the second display region, and scan stages which are disposed in the second display region and apply scan signals to the first pixel and the second pixel. The first pixel includes a first pixel driver including a first pixel transistor and a first pixel light-emitting device connected to the first pixel driver. The second pixel includes a second pixel driver including a second pixel transistor and a second pixel light-emitting device connected to the second pixel driver. The second pixel driver is disposed between scan stages adjacent to each other along a first direction.
Abstract:
A light emission driver includes a plurality of stages outputs a light emission control signal. Each of the stages includes an input circuit controlling voltages of a first node and a second node, an output circuit supplying a voltage of first power or a second power to an output terminal, a first signal processor controlling a voltage of a fourth node based on a signal supplied to a third input terminal and a voltage of a fifth node, a second signal processor controlling the voltage of the fourth node in response to the voltage of a third node, a first stabilizer limiting voltage drops of the first node and the second node, and a second stabilizer controlling an electrical connection between the third node and the first node in response to the voltage of the fourth node.
Abstract:
An array substrate for a touch sensor in-cell type display device is disclosed. The array includes a base substrate, a plurality of pixels disposed on the base substrate and including a plurality of pixel rows and a plurality of pixel columns, a gate line extending in a first direction on the base substrate and disposed above and below in each pixel row, a data line extending in a second direction intersecting with the first direction on the base substrate and disposed in every two pixel columns, a touch sensing line extending in the second direction on the base substrate and parallel to the data line, a plurality of touch blocks provided by grouping the plurality of pixels by a predetermined number on the base substrate, and a common electrode disposed in each of the plurality of touch blocks.
Abstract:
A display device includes: a first substrate including a touch region for sensing a touch and a peripheral area surrounding the touch region; a second substrate facing the first substrate; thin film transistors positioned on the first substrate; pixel electrodes connected to the thin film transistors; common electrodes arranged to transmit a common voltage; sensing wires connected to the common electrodes and arranged to transmit a detection signal for sensing a touch; and a transparent electrode layer positioned on a first surface of the second substrate, the transparent electrode layer having a portion overlapping the peripheral area, and having at least one opening positioned over the touch region.